Парадоксы Зенона

Апори́и Зено́на (от др.-греч. ἀπορία - трудность) — внешне парадоксальные рассуждения на тему о движении и множестве, автором которых является древнегреческий философ Зенон Элейский (V век до н. э.). Современники упоминали более 40 апорий Зенона, до нас дошли 9, обсуждаемые в «Физике» и в других трудах Аристотеля, в комментариях Симпликия, Филопона и Фемистия к Аристотелю

Наиболее известны парадокс «Ахиллес и черепаха» и другие апории Зенона о движении, которые обсуждаются более двух тысячелетий, им посвящены сотни исследований.

Ошибочно воспринимать эти рассуждения как софизмы или полагать, что с появлением высшей математики все апории разрешены. Бертран Рассел писал, что апории Зенона «в той или иной форме затрагивают основания почти всех теорий пространства, времени и бесконечности, предлагавшихся с его времени до наших дней». «Проблематика аргументов Зенона далеко выходит за пределы конкретной исторической ситуации, обусловившей их появление. Анализу апорий Зенона посвящена колоссальная литература; особенно большое внимание им уделялось в последние сто лет, когда математики стали усматривать в них предвосхищение парадоксов современной теории множеств».

Научные дискуссии, вызванные рассуждениями Зенона, существенно углубили понимание таких фундаментальных понятий, как роль непрерывного и дискретного в природе, адекватность физического движения и его математической модели и др. Эти дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось.

Модели движения в античной натурфилософии

В V веке до н. э. древнегреческая математика достигла высокой ступени развития, и пифагорейская школа выражала уверенность, что математические закономерности лежат в основе всех законов природы. В частности, математическая модель движения в природе была создана на основе геометрии, которая к этому времени уже была достаточно глубоко разработана. Геометрия пифагорейцев опиралась на ряд идеализированных понятий: тело, поверхность, фигура, линия — и самым идеализированным было фундаментальное понятие точки пространства, не имеющей никаких собственных измеримых характеристик. Тем самым любая классическая кривая считалась одновременно и непрерывной, и состоящей из бесконечного количества отдельных точек. В математике это противоречие не вызывало проблем, но применение этой схемы к реальному движению поставило вопрос, насколько правомерен такой внутренне противоречивый подход.

Первым проблему ясно сформулировал Зенон Элейский в серии своих парадоксов (апорий).

Апории и вообще взгляды Зенона нам известны только в кратком пересказе других античных философов, которые жили столетия спустя и хотя высоко ценили Зенона как «основателя диалектики», но чаще всего были его идейными противниками. Поэтому трудно достоверно выяснить, как формулировал апории сам Зенон, что он хотел показать или опровергнуть. По мнению большинства комментаторов, их цель — показать, что наше (математическое) представление о движении противоречиво. Эта точка зрения подтверждается тем, что элеатов в древности называли афизиками, то есть противниками науки о природе.

В двух апориях (Ахиллес и Дихотомия) предполагается, что время и пространство непрерывны и неограниченно делимы; Зенон показывает, что это допущение приводит к логическим трудностям. Третья апория («Стрела»), напротив, рассматривает время как дискретное, составленное из точек-моментов; в этом случае, как показал Зенон, возникают другие трудности. Отметим, что неправильно утверждать, будто Зенон считал движение несуществующим, потому что, согласно элейской философии, доказать несуществование чего бы то ни было невозможно: «несуществующее немыслимо и невыразимо»

Ахиллес и черепаха

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Дихотомия

Чтобы преодолеть путь, нужно сначала преодолеть половину пути, а чтобы преодолеть половину пути, нужно сначала преодолеть половину половины, и так до бесконечности. Поэтому движение никогда не начнётся.

Название «Дихотомия» (по-гречески: деление пополам) дано Аристотелем

Летящая стрела

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.