Математика не подходит для описания Вселенной?

Математику часто называют языком Вселенной. Ученые и инженеры часто говорят об элегантности математики при описании физической реальности, ссылаясь на такие примеры, как E=mc2 и простой подсчет объектов реального мира. Тем не менее, до сих пор не утихают дискуссии по поводу того, является ли математика основой всего сущего, открыта ли она нами или просто создана нашим воображением, как способ описания мира. Первая точка зрения относится к математическому платонизму, сторонники которого склонны считать, что математика была не создана, а лишь обнаружена людьми.
Дерек Эбботт (Derek Abbott), профессор электротехники и электроники в Университете Аделаиды, Австралия, утверждает, что математический платонизм ошибочен и математика не может дать точного определения реальности. Профессор Эбботт приводит доводы в пользу противоположной точки зрения, которая утверждает, что математика является продуктом человеческого воображения и мы пытаемся приспособить ее к картине реальности. Подробнее результаты исследования Дерека Эбботта будут представлены в издании Proceedings of the IEEE.
На самом деле, гипотеза Эбота далеко не нова, он просто пытается доказать ее через собственный опыт. Его исследование интересно тем, что Эббот инженер, а не математик, 80% которых склоняются к платонизму. Согласно наблюдениям Эббота, большинство инженеров и даже физиков в приватной беседе склонны сомневаться в платонизме, хоть и придерживаются его публично.
По мнению Эббота, причина такого расхождения в том, что как только ученый осознает суть математики, ее ментальное происхождение, он начинает видеть слабости и недостатки математических моделей, которые не в состоянии описать определенные свойства физической вселенной.
Эбботт утверждает, что математика не так уж и хороша при описании реальности и определенно не является «чудом». Математика очень удобна, когда надо сжато описать явления, которые невозможно обработать с помощью нашего слабого мозга.

Математика красива, но для описания некоторых вещей ее использовать затруднительно
«Математика кажется чудесным универсальным языком потому, что мы выбираем именно те задачи, которые можно блестяще решить с помощью математики, - говорит профессор Дерек Эбботт.
– Но на миллионы неудачных математических моделей никто не обращает внимания. Есть много случаев, когда математика неэффективна». Эббот приводит несколько таких примеров.
Ярчайший пример – транзистор, на основе которого в буквальном смысле построена наша цивилизация. В 1970 году, когда транзистор измерялся в микрометрах, ученые описывали его работу с помощью красивых элегантных уравнений. Современные субмикронные транзисторы демонстрируют эффекты, которые в старые уравнения не укладываются, и требуют сложных компьютерных моделей, для объяснения принципов их работы.
Относительность математики проявляется очень часто. Например мы можем измерить длину жизни человека и называем Солнце источником энергии. Но если бы человек жил столько же, сколько и Вселенная, короткая жизнь Солнца воспринималась бы, как кратковременная флуктуация. С этой точки зрения Солнце для людей не является источником энергии.
Даже простой счет имеет свои пределы. При подсчете, например бананов, в какой-то момент количество бананов будет настолько велико, что гравитация массы бананов заставит их коллапсировать в черную дыру. Таким образом, в какой-то момент мы больше не сможем полагаться на простей счет.
А как насчет концепции целых чисел? Где кончается один банан и начинается следующий? Мы, конечно, знаем визуально каким образом разделяются бананы, но у нас нет формального математического определения этого явления. Если бы мы, например. были газообразными существами и жили разреженными облаками среди других облаков, то для нас концепция разделения твердых тел не была бы такой очевидной. Мы опираемся лишь на наши врожденные особенности, и нет никакой гарантии, что математические описания, которые мы создаем, на самом деле универсальны.
Дерек Эбботт отнюдь не собирается «сорвать розовые очки» с математиков. Наоборот, ученый считает, что восприятие математики как инструмента, обеспечит большую свободу мысли. В качестве примера Эббот приводит векторные операции и возрождение интереса к геометрической алгебре, возможности которой, теоретически, можно существенно расширить.
Комментарии
Грани разума пугают
Разницей своей,
Расставляя путы мыслей,
Хитрых западней.
Преломив о светлый край
Сознания поток,
Сразу понимаешь верно,
Где души исток.
Как младенец чистый,
Алгоритм у света.
Призывает сердце
К честному ответу -
Кто я, и какое в мире
Мне предназначенье,
И откуда посланы
Истины мученья?
Разве математика сможет ответить, на вопросы, поставленные сердцем:
Призывает сердце
К честному ответу -
Кто я, и какое в мире
Мне предназначенье,
И откуда посланы
Истины мученья?
Не бросайтесь такими словами, а то проклятие падёт на вашу голову.
Наша высшая в сравнении с настоящей Математикой просто детский лепет.
Мы потеряли Знание и поэтому вынуждены мудрствовать.
Зато как умеем звонко смеяться над алхимиками, которые этим Знанием обладали.
Кстати, вот интересная передача о Перельмане: http://www.youtube.com/watch?v=YlxocvKVOXg .Рекомендую!
Вона, Перельман только недавно доказал недоказуемое..)))
А подобные "ученые" - типа нашего Петрика, имхо... или хохляцкого Бебика..)))
Спокойной ночи!
Так про жён то пишу я, а это не моя статья))
Если же серьёзно о математике, то математическое пространство, лежащие в координатах Декарта, не соответствует природной симметрии. СР-инвариант, зеркальная с инверсией. Соответственно, как только мы переходим от арифметики к алгебре, так сразу начинаются ошибки, враньё.
Тут женская статья, потому примеры приводить не буду, но ошибки даже в двух измерениях можно найти.
пол автора я не нашла в источнике.
Прямая x = y;
Преобразуем:
x / y = 1;
x - y = 0;
После возведения во вторую степень каждого выражения убеждаемся, что результат различен. Последнее выражение даст 1 кривую, тогда как первые два - по две кривые каждое.
Если перейти в 3 измерения, то мы вообще ничего не сможем однозначно описать.
Почему же они этого не видят? Надо бы как-то доказывать. Но доказательств нет. Такая вот ситуация.
Там действуют иные законы.
Но - проблема не в математике, как таковой, а именно в несовершенстве человека. В буквальном переводе с греческого само слово "математика" означает "наука" или "познание". И то, и другое - беспредельно и вечно. Человек же, как субъект научного познания, несовершенен, нетерпелив, ленив и нелюбопытен (Пушкин тысячу раз прав!), природа его такова и улучшить ее не получается веками.
Не имея музыкального слуха, образования и любви к музыке, можно сколько угодно долго ругать рояли, органы и виолончели, они не станут от этого хуже :)))
Хотя и не могу утверждать, что математически описать вселенную не достижимо. Нет предела совершенству.
- она ж не одна описывает...
У чипированной личности исчезнет этот недостатк - всю жизнь учиться, чтобы понять что он глуп.
Не понимаемые человеком интуитивно математические понятия войдут в душу, и младенцы обучаться в колыбелях тому, до чего в наше время многие профессора "не доходят"..
Комментарий удален модератором