Двигаться быстрее скорости света? — Нет ничего проще

На модерации Отложенный

image

Теория относительности завораживает своими парадоксами. Все мы знаем про близнецов, про возможности засунуть длинный самолёт в короткий ящик. Сегодня каждый выпускник школы знает ответы на эти классические загадки, а уж студенты-физики и подавно считают, что тайн в специальной теории относительности для них не осталось.

Всё бы хорошо, если бы не удручающе обстоятельство — невозможность сверхсветовых скоростей. Неужели никак нельзя быстрее?! — думала я в детстве. А может быть можно?! Поэтому приглашаю вас на сеанс, уж и не знаю, чёрной или белой магии имени Альберта Эйнштейна с разоблачением в конце. 

К Альфе Центавра

Приглашаю вас занять места в нашем межзвёздном корабле, который направляется в сторону Альфы Центавра. От конечной точки маршрута нас отдаляют 4 световых года. Внимание, запускаем двигатели. Поехали! Для удобства пассажиров наш капитан установил такую тягу, чтобы мы ускорялись с величиной a=g и ощущали привычную нам на Земле силу тяжести.

Вот мы уже прилично разогнались, пускай до половины скорости света c/2. Зададим казалось несложный вопрос: с какой же скоростью мы будем приближаться к Альфа Центавра в нашей собственной (корабельной) системе отсчёта. Казалось бы всё просто, если мы летим со скоростью c/2 в неподвижной системе отсчёта Земли и Альфы Центавра, то и с нашей точки зрения мы приближаемся к цели со скоростью c/2.

Тот, кто уже почувствовал подвох, совершенно прав. Ответ c/2 неверен! Тут надо сделать уточнение, под скоростью приближения к Альфа Центавра я называю изменение оставшегося расстояния до неё, делённое на промежуток времени, за который такое изменение произошло. Всё, разумеется, измеряется в нашей системе отсчёта, связанной с космическим кораблём.

Тут надо вспомнить, о лоренцевском сокращении длины. Ведь разогнавшись до половины скорости света мы обнаружим, что масштаб вдоль направления нашего движения сжался. Напомню формулу:

image

И теперь, если на скорости в половину скорости света мы измерим расстояние от Земли до Альфы Центавра, мы получил не 4 св. года, а всего лишь 3,46 св.года.

Получается, что только благодаря тому факту, что мы разогнались до c/2 мы уже уменьшили расстояние до конечной точки путешествия почти 0,54 св.года. А если мы будем не просто двигаться с большой скоростью, но ещё и ускоряться, то у масштабного фактора появится производная по времени, которая по сути тоже есть скорость приближения и плюсуется к V.

Таким образом помимо к нашей обычной, я бы сказала классической, скорости V добавляется ещё один член — динамическое сокращение длины оставшегося пути, которое возникает тогда и только тогда, когда есть ненулевое ускорение. Ну что же, возьмём карандаш и посчитаем.

А тех, кому лень следить за вычислениями встречаю на другом берегу спойлера

Полюбуемся на конечную формулу

image

Она удивительна! Если первый член — скорость — ограничен скоростью света, то второй член не ограничен ничем!

Возьмите L побольше и… второе слагаемое с лёгкостью может превысить c.

— Что-что! — не поверят некоторые.
— Да-да, именно так, — отвечу я. — Оно может быть больше скорости света, больше двух скоростей света, больше 10 скоростей света. Перефразируя Архимеда, могу сказать: «дайте мне подходящую L, и я обеспечу вам сколь угодно большую скорость.»

Что ж а давайте подставим числа, с числами всегда интереснее. Как мы помним, капитан установил ускорение g, а скорость уже достигла V=c/2. Тогда обнаружим, что при L=0.71 светового года, наша скорость приближения сравняется со скоростью света. Если же мы подставим L=4световых года, то

image

Прописью: «три целых, три десятых скорости света».

Продолжаем удивляться

Давайте посмотрим ещё более внимательно на формулу (5). Ведь не обязательно садиться в релятивистский космический корабль. И скорость, и ускорение могут быть совсем маленькими. Всё дело в волшебной L. Вы только вдумайтесь! 

Вот я села в машину и нажала на газ. У меня есть скорость и ускорение. И в этот самый момент я могу гарантировать, что где-то примерно сотне-другой миллионов световых лет впереди меня есть объекты, приближающиеся сейчас ко мне быстрее света. Для простоты я ещё не брала в расчёт скорость движения Земли по орбите вокруг Солнца, и Солнца вокруг центра Галактики. С их учётом объекты со сверхсветовой скоростью приближения окажутся уже совсем поблизости — не на космологических масштабах, а где-то на периферии нашей Галактики.

Получается, что невольно даже при минимальных ускорениях, например встав со стула, мы участвуем в сверхсветовом движении.

Удивляемся ещё

Посмотри на формулу (5) совсем-совсем пристально. Давайте узнаем не скорость приближения к Альфе Центавра, а наоборот скорость удаления от Земли. При достаточно большом L, например, на полпути к цели, мы можем обнаружить, что к нам приближается и Земля, и Альфа Центавра. Оправившись от удивления, конечно можно догадаться, что виной всему сокращение длины, которое работает не только вперёд, но и назад. Пространство за кормой космического корабля сжимается быстрее, чем мы улетаем от точки старта.

Несложно понять и другой удивительный эффект. Ведь стоит изменить направление ускорения, как второе слагаемое в (5) тут же поменяет знак. Т.е. скорость приближения может запросто стать нулевой, а то и отрицательной. Хотя обычная скоростью V у нас по прежнему будет направлена к Альфе Центавра.

Разоблачение

Надеюсь, я вас достаточно сбила с толку. Как же так, нас учили, что скорость света максимальна! Нельзя приближаться к чему-либо быстрее скорости света! Но здесь стоит обратить внимание на присказку к любому релятивистскому закону. Она есть в любом учебнике, но кажется, что только загромождает формулировку, хотя именно в ней вся «соль». Эта присказка гласит, что постулаты специальной теории относительности работают «в инерциальной системе отсчёта». 

В неинерциальной системе отсчёта Эйнштейн нам ничего не гарантирует. Такие дела!