Последний край науки

Как мы обсуждали в главе 1, астрономы открыли проблему темной материи путем измерения ускорений звезд на орбитах вокруг центра их галактик. Проблема возникла потому, что, получив измеренные ускорения, астрономы смогли вывести распределения галактической материи. В большинстве галактик этот результат оказался не согласующимся с непосредственно наблюдаемой материей.

Теперь я могу сказать немного больше о том, как возникает такое рассогласование. (С целью упрощения я ограничиваю обсуждение спиральными галактиками, в которых большинство звезд двигаются по круговым орбитам в диске.) В каждой галактике, где была найдена проблема, она оказывала влияние только на звезды, двигающиеся снаружи определенной орбиты. Внутри этой орбиты проблем нет – ускорения таковы, какие и должны быть, если они вызываются видимой материей. Так что кажется, что имеется область внутри галактики, в пределах которой работают законы Ньютона и где не нужна темная материя. Вне этой области вещи приобретают беспорядок.

Ключевой вопрос таков: где располагается специальная орбита, разделяющая две области? Мы можем предположить, что она появляется на особом расстоянии от центра галактики. Это естественная гипотеза, но она не верна: не проходит ли разделяющая линия по определенной плотности звезд или их излучения? Ответ опять: нет. Что кажется определяющим разделительную линию, это, что удивительно, темп самого ускорения. Когда что-то удаляется от центра галактики, ускорения уменьшаются, и тут оказывается критический темп, который отмечает нарушение ньютоновского закона гравитации. Как только ускорение звезды превысит эту критическую величину, ньютоновский закон кажется работающим, и наблюдается предсказанное ускорение. В этих случаях не нужно постулировать никакой темной материи. Но когда наблюдаемое ускорение меньше, чем критическая величина, оно больше не согласуется с предсказанием закона Ньютона.

Что это за специальное ускорение? Оно измерено и равно 1,2 х 10-8 сантиметров в секунду за секунду. Это близко к c2/R, величине ускорения, произведенного космологической константой!

Этот выдающийся поворот в истории темной материи был открыт в начале 1980х израильским физиком по имени Мордехай Милгром. Он опубликовал свои изыскания в 1983, но долгие годы они почти совершенно игнорировались.[80]Однако, когда были получены более точные данные, стало ясно, что его наблюдение было правильным. Масштаб c2/Rхарактеризует ускорения, где закон Ньютона нарушается для галактик. Это сейчас называется астрономами законом Милгрома.

Я хочу, чтобы вы поняли, насколько таинственным является это наблюдение. Масштаб R есть масштаб всей наблюдаемой вселенной, который в чудовищное количество раз больше, чем размер любой индивидуальной галактики. Ускорение c2/Rвозникает на космологическом масштабе; как отмечалось, это темп, с которым ускоряется расширение вселенной. Нет очевидных причин, по которым этот масштаб вообще играет какую-либо роль в динамике индивидуальной галактики. К осознанию, что это происходит, нас подтолкнули данные. Я вспоминаю свое изумление, когда я впервые узнал об этом. Я был шокирован и возбужден.

Я гулял около часа в удивлении, бормоча бессвязные ругательства. Наконец-то! Возможная подсказка из эксперимента, что в мире имеется намного больше, чем мы, теоретики, представляем!

Как это должно быть объяснено? В стороне от случайного совпадения имеются три возможности. Могла бы быть темная материя, а масштаб c2/R мог бы характеризовать физику частиц темной материи. Или гало темной материи могло бы характеризоваться масштабом c2/R, поскольку это связано с плотностью темной материи во время, когда она коллапсировала, чтобы сформировать галактики. В любом случае темная энергия и темная материя являются различными явлениями, но взаимосвязанными.

Другая возможность в том, что нет темной материи и закон гравитации Ньютона нарушается, как только ускорения оказываются столь же малы, как и специальная величина c2/R. В этом случае необходим новый закон, который заменит закон Ньютона в этих условиях. В своей статье 1983 Милгром предложил такую теорию. Он назвал ее MOND, что означает сокращение от «модифицированной ньютоновской динамики». Согласно закону гравитации Ньютона ускорение тела из-за массы уменьшается особым образом, когда вы удаляетесь от этой массы – а именно, как обратный квадрат расстояния. Теория Милгрома говорит, что закон Ньютона сохраняется, но только пока ускорение не упадет до магической величины 1,2 х 10-8 см/сек2. После этой точки вместо того, чтобы уменьшаться как обратный квадрат расстояния, оно уменьшается только обратно пропорционально расстоянию. Более того, хотя обычно ньютоновская сила пропорциональна массе тела, вызывающего ускорение, умноженной на константу (которая есть гравитационная константа Ньютона), MOND говорит, что, когда ускорение очень мало, сила пропорциональна квадратному корню из массы, умноженной на константу Ньютона.

Если Милгром прав, тогда причина того, что звезды за пределами специальной орбиты ускоряются больше, чем это должно быть, в том, что они ощущают более значительную гравитационную силу, чем предсказывал Ньютон! Здесь совершенно новая физика – не на планковском масштабе, и даже не в ускорителе, а прямо перед нами, в движениях звезд, которые мы видим в небе.

MOND, как теория, не принесла для физиков много смысла. Имеются веские причины, почему гравитационные и электрические силы падают как квадрат расстояния. Это оказывается следствием относительности, объединенной с трехмерной природой пространства. Я не хочу вдаваться здесь в детали, но заключение радикальное. Теория Милгрома оказывается не совместима с базовыми физическими принципами, включая принципы СТО и ОТО.

Были попытки модифицировать ОТО, чтобы сконструировать теорию, которая включает в себя MOND или нечто близкое к ней. Одна такая теория была придумана Якобом Бекенштейном; другая Джоном Моффатом, тогда из Университета Торонто; и еще одна Филипом Маннхаймом из Университета Коннектикута. Это очень одаренные люди (Бекенштейн, как вы можете вспомнить из главы 6, открыл энтропию черных дыр, тогда как Моффат изобрел много удивительных вещей, включая космологию с переменной скоростью света). Все три теории работают до некоторого предела, но они являются, по моему мнению, в высшей степени искусственными. Они имеют некоторые дополнительные поля и требуют настройки нескольких констант до маловероятных величин, чтобы получить согласие с наблюдениями. Я также беспокоюсь о проблеме нестабильности, хотя авторы заявляют, что такие проблемы урегулированы. Хорошая новость, что люди могут изучать такие теории в рамках старого способа действий – путем сравнения своих предсказаний с большим количеством имеющихся у нас астрономических данных.

Нужно сказать, что за пределами галактик MOND работает не очень хорошо. Имеется множество данных о распределении масс и движении галактик на масштабах, больших, чем галактический масштаб. В этом режиме теория темной материи намного лучше MOND при оценке данных.

Тем не менее, MOND кажется вполне хорошо работающей внутри галактик.[81] Данные, собранные за последнее десятилетие, показали, что более чем в восьмидесяти случаях (по последней оценке) из примерно ста изученных MOND предсказывает, как звезды двигаются внутри галактик лучше, чем модели, базирующиеся на темной материи. Конечно, последние все время усовершенствуются, так что я не буду пытаться предсказать, как повернется соответствие. Но на настоящий момент мы, кажется, стоим перед очаровательно скандальной ситуацией. Мы имеем две совершенно разные теории, только одна из которых может быть верной. Одна теория, – которая базируется на темной материи, – имеет хороший смысл, в который легко поверить, и очень хорошо предсказывает движения вне галактик, но не так хорошо внутри них. Другая теория, MOND, очень хорошо работает с галактиками, терпит неудачу вне галактик и, в любом случае, базируется на предположениях, которые кажутся противоречащими в высшей степени хорошо установленной науке. Я должен признаться, что ничто в последний год не вызывает у меня ночью бессонницу больше, чем волнения по поводу этой проблемы.

Было бы легко проигнорировать MOND, если бы не факт, что закон Милгрома предполагает, что масштаб загадочной космологической константы каким-то образом имеет отношение ко всему, что определяет, как звезды двигаются в галактиках. Только из данных опыта оказывается, что ускорение c2/R играет ключевую роль в том, как двигаются звезды. Происходит ли это из-за связи между темной материей и либо темной энергией, либо космологическим масштабом расширения, либо из-за чего-то еще более радикального, мы видим, что в этом ускорении на самом деле может быть найдена новая физика.

Я беседовал о MOND с несколькими из наиболее одаренных теоретиков, кого я знаю. Часто это происходило примерно так: Мы начинали говорить о некоторых серьезных проблемах генерального направления, и один из нас упоминал галактики. Мы бросали друг на друга быстрый взгляд понимания, и один из нас произносил: "Так вы тоже беспокоитесь по поводу MOND," как будто признавался в секретном пороке. Затем мы делились нашими сумасшедшими идеями – поскольку все идеи по поводу MOND, которые не являются сразу неправильными, оказываются сумасшедшими.

Единственное преимущество, что это тот случай, где имеется множество данных, и все время получаются еще лучшие данные. Раньше или позже мы узнаем, объясняет ли темная материя движение звезд и галактик, или мы должны будем принять радикальную модификацию законов физики.

Конечно, это может быть только случайность, что темная материя и темная энергия разделяют общий физический масштаб. Не все совпадения имеют смысл. Так что мы должны спросить, не имеется ли других явлений, где это слабое ускорение может быть измерено. Если так, имеется ли там ситуация, где теория и эксперимент расходятся?

Оказывается, что есть другой такой случай, и он тоже тревожащий. NASA до сегодняшнего дня послало несколько космических аппаратов за пределы Солнечной системы. Среди них два – Пионер 10 и 11 – прослеживались десятилетия. Пионеры были сконструированы для путешествия к внешним планетам, после чего они продолжили движение прочь от Солнца в противоположных направлениях в плоскости Солнечной системы.

Ученые NASA в Лаборатории реактивного движения (Jet Propulsion Laboratory – JPL) в Пасадене, Калифорния, смогли определить скорости аппаратов Пионер с использованием допплеровского сдвига, и, таким образом, смогли точно отследить их траектории. JPL попыталась предугадать траектории с помощью предсказания сил, действующих на аппараты от Солнца, планет и других составляющих Солнечной системы. В обоих случаях наблюдаемые траектории не соответствовали предсказанным.[82]Расхождения были вызваны дополнительным ускорением, притягивающим аппараты в направлении Солнца. Величина этого мистического ускорения была около 8 х 10-8 сантиметра в секунду за секунду – больше, чем величина аномального ускорения, измеренного в галактиках, примерно в 6 раз. Но это все еще довольно близко, учитывая, что тут нет видимой связи между двумя явлениями.

Я должен подчеркнуть, что данные в этом случае еще полностью не приняты. Хотя аномалия наблюдалась у обоихПионеров, что намного более убедительно, чем если бы это было видно только у одного, они оба были построены и отслеживались JPL. Однако, данные JPL независимо анализировались учеными с помощью Компактной высокоточной программы движения спутников Аэрокосмической корпорации, и эти результаты согласовались с результатами JPL. Так что данные до настоящего времени кажутся правдоподобными. Но астрономы и физики имеют понятно высокие стандарты доказательства, особенно когда мы задаемся вопросом об уверенности в данных, что закон гравитации Ньютона нарушается сразу за пределами нашей Солнечной системы.

Поскольку расхождение мало, может быть возможным оценить его через некоторый мелкий эффект, вроде того, что сторона аппарата, обращенная к Солнцу, была чуть горячее, чем противоположная сторона; или вроде слабой утечки газа. Команда JPL приняла во внимание каждый такой эффект, они были учтены, и до сих пор не удается объяснить наблюдавшееся аномальное ускорение. Недавно были предложения послать наружу специально подготовленный зонд, сконструированный и построенный так, чтобы удалить так много подобных паразитных эффектов, насколько возможно. Такому зонду потребуется много лет, чтобы покинуть Солнечную систему, но даже так, эта миссия стоит затраченного труда. Закон гравитации Ньютона простоял более трех сотен лет; если его удастся или слегка точнее подтвердить, или доказать его неправильность, тогда больше не останется вопросов.

Что если MOND или аномалия Пионеров окажется правильной? Могут ли их данные быть согласованы с некоторой существующей теорией?

По самой меньшей мере, MOND не совместима со всеми версиями теории струн, изученными до сегодняшнего дня. Может ли она быть совместима с некоторой пока не известной версией теории струн? Конечно. Учитывая гибкость теории струн, нет оснований отвергать это, хотя это было бы трудно выполнить. Как насчет других теорий? Некоторые люди с трудностями пытались вывести MOND из сценария мира на бране или некоторых версий квантовой гравитации. Имеется несколько идей, но ни одна из них не работает впечатляюще. Фотини Маркопоулоу, моя коллега по Пограничному институту теоретической физики, и я рассуждали о том, как получить MOND из квантовой гравитации, но мы не смогли показать, как наша идея работает в деталях. MOND является мучительной тайной, но нет никого, кто бы решил ее сегодня, так что будем двигаться к другим подсказкам по новой физике, следующим из эксперимента.

Самые поразительные эксперименты те, которые переворачивают всеми поддерживаемые убеждения. Некоторые убеждения настолько врезались в наше мышление, что они отражены в нашем языке. Например, мы говорим о физическихконстантах, чтобы обозначить те числа, которые никогда не изменяются. Сюда включается большинство основных параметров законов физики, таких как скорость света или заряд электрона. Но являются ли эти константы на самом деле постоянными? Почему не могло бы быть, что скорость света изменяется во времени? И можно ли было бы измерить такое изменение?

В теории мультивселенной, обсуждавшейся в главе 11, мы представляли параметры, изменяющиеся по широкому диапазону различных вселенных. Но как мы можем наблюдать такие вариации в нашей собственной вселенной? Могли бы константы, такие как скорость света, изменяться со временем в нашей вселенной? Некоторые физики указывали, что скорость света измеряется в некоторой системе единиц – то есть, столько-то километров в секунду. Как, они утверждали, вы можете различить изменение скорости света со временем в ситуации, в которой сами единицы изменяются со временем?

Чтобы ответить на этот вопрос, нам нужно узнать, как определяются единицы расстояния и времени. Эти единицы основываются на некоторых физических стандартах, которые определяются в терминах поведения некоторых физических систем. Сначала стандарты ссылались на Землю: метр был одной миллионной долей расстояния от Северного полюса до экватора. Теперь стандарты базируются на свойствах атомов – например, секунда определяется в терминах колебаний атома цезия.

Если вы приняли во внимание, как определяются единицы, тогда физические константы определяются через соотношения. Например, скорость света может быть определена, если вы знаете отношение между временем, которое требуется свету, чтобы пересечь атом, и периодом света, который испускает атом. Эти виды отношений являются одними и теми же во всех системах единиц. Отношение ссылается чисто на физические свойства атомов; в его измерении не содержится решения по поводу выбора единиц. Поскольку отношения определяются в терминах одних только физических свойств, имеет смысл спросить, изменяются ли эти отношения во времени, или нет. Если изменяются, то тогда во времени изменяются и взаимоотношения между одними физическими свойствами атома и другими.

Изменения в этих отношениях могли бы быть измеримы через изменения в частотах света, испускаемого атомами. Атомы испускают свет в спектре, состоящем из многих дискретных частот, так что имеется множество отношений, определенных парами этих частот. Можно спросить, не отличаются ли эти отношения в свете от удаленных звезд и галактик – то есть, в свете, который имеет возраст в миллиарды лет.

Эксперименты такого рода не смогли обнаружить изменения в константах природы внутри нашей галактики или среди близлежащих галактик. На масштабе времени в миллионы лет, таким образом, константы не изменяются никаким обнаружимым образом. Но непрерывно продолжающийся эксперимент группы из Австралии нашел изменения в отношениях, рассматривая свет от квазаров – свет, который был излучен примерно 10 миллиардов лет назад. Австралийские ученые не изучали атомные спектры самих квазаров; то, что они делали, более остроумно. На пути от квазара до нас свет путешествовал через многие галактики. Каждый раз, когда он проходил через галактику, некоторое количество света поглощалось атомами этой галактики. Атом поглощают свет на особых частотах, но из-за эффекта Допплера частота, на которой свет был поглощен, сдвинута в направлении красного конца спектра на величину, пропорциональную расстоянию от галактики до нас. В результате спектр света от квазара был декорирован лесом линий, каждая из которых соответствовала свету, поглощенному галактикой на определенном расстоянии от нас. Изучая отношения частот этих линий, мы можем поискать изменения в фундаментальных константах за время, в течение которого свет путешествовал от квазара. Поскольку изменения должны проявиться как отношения частот и имеется несколько фундаментальных констант, физики взялись за изучение простейшего отношения –постоянной тонкой структуры, которая составлена из констант, определяющих свойства атома. Ее называют альфа, и она равна квадрату заряда электрона, деленному на скорость света и на постоянную Планка.

Австралийцы изучили измерения света от восьмидесяти экземпляров квазаров, используя очень точные измерения, полученные телескопом Кека (Keck) на Гавайях. Они вывели из своих данных, что около 10 миллиардов лет назад альфа была меньше примерно на 1 часть из 10 000.[83]

Это малое изменение, но если оно поддержится, это будет весомое открытие, самое важное за десятилетия. Это мог бы быть первый раз, когда было обнаружено, что фундаментальная константа природы меняется во времени.

Многие астрономы, которых я знаю, держат разум открытым. По всем оценкам данные были собраны и проанализированы экстремально тщательно. Никто не нашел очевидных изъянов в методе или результатах австралийской команды, но сам эксперимент очень тонкий, привлеченные для него точности измерений находятся на пределе возможного, и мы не можем исключить вероятности, что некоторая ошибка проскользнула в анализ. Как следует из написанного, ситуация шаткая, что типично для новых экспериментальных технологий. Другие группы пытаются провести те же измерения, и результаты дискуссионны.[84]

Многие теоретики скептически настроены к свидетельствам изменений в постоянной тонкой структуры. Они беспокоятся, что такое изменение будет чрезмерно неестественным, так как оно могло бы ввести в теорию электронов, ядер и атомов временную шкалу больших порядков величины, удаленную от шкал атомной физики. Конечно, речь могла бы идти о масштабе космологической константы. Фактически, масштаб, при котором постоянная тонкой структуры изменяется, не связан ни с чем другим, что было измерено, за исключением самой космологической константы. Так что, возможно, это другое загадочное явление, которое должно иметь дело с масштабом R.

Еще другим проявлением масштаба R могут быть загадочные массы нейтрино. Вы можете конвертировать масштаб R к масштабу масс, используя только фундаментальные константы физики, и итог будет того же порядка величины, как и разницы между массами различных видов нейтрино. Никто не знает, почему нейтрино, легчайшие из частиц, должны иметь массы, связанные с R, но это так – другая мучительная подсказка.

Могла бы быть финальная экспериментальная подсказка, содержащая масштаб R. Объединяя его с ньютоновской гравитационнной константой, мы можем заключить, что могли бы быть эффекты, изменяющие гравитационную силу на масштабе миллиметров. В настоящее время группой в Университете Вашингтона, возглавляемой Эриком Адельбергером, проводятся ультраточные измерения силы гравитации между двумя объектами, которые разделены миллиметрами. На июнь 2006 все, что они могли сказать публично, это что они не обнаружили свидетельств, что законы Ньютона нарушаются на масштабах 6/100 миллиметра.

 

По крайней мере, наши эксперименты должны определенно проверять фундаментальные принципы физики. Имеется великая склонность думать, что эти принципы, будучи раз открытыми, являются вечными, пока что история говорит о другом. Почти каждый принцип, раз объявленный, занял чье-то место. Не важно, насколько они полезны, или насколько хороши приближения, которые они дают для явлений, раньше или позже большинство принципов падет, как только эксперимент прозондирует естественный мир более точно. Платон объявил, что все в небесных сферах движется по окружностям. Для этого имелись веские причины: все выше сферы Луны, верилось, является вечным и совершенным. А нет движения более совершенного, чем однородное движение по окружности. Птолемей принял этот принцип и расширил его, сконструировав эпициклы – окружности, двигающиеся по окружностям.

Орбиты планет и в самом деле очень близки к круговым, а движение планет по их орбитам является почти однородным. Как-то все было подогнано, что последняя круговая планетарная орбита принадлежала непокорному Марсу – и его орбита была столь близка к круговой, что отклонения были на пределе того, что можно было бы вывести из лучших наблюдений невооруженным глазом. В 1609 после девяти лет усердной работы над марсианской орбитой Иоганн Кеплер понял, что это должен быть эллипс. В этот год Галилей направил телескоп в небо и начал новую эру астрономии, в которой со временем стало ясно, что Кеплер был прав. Окружности являются самыми совершенными формами, но планетарные орбиты не круговые.

Когда древние объявили круг самой совершенной формой, они имели в виду, что она самая симметричная: каждая точка на орбите такая же, как и любая другая. Принципы, которые тяжелее всего отбросить, это те, которые обращаются к нашей потребности в симметрии и повышают наблюдаемую симметрию до необходимости. Современная физика основана на коллекции симметрий, которые, как мы уверены, хранят большинство базовых принципов. Не менее, чем древние, многие современные теоретики инстинктивно верят, что фундаментальная теория должна быть самым симметричным из возможных законов. Должны ли мы доверять этому инстинкту, или мы должны прислушаться к урокам истории, которые говорят нам, что (как в примере с планетарными орбитами) природа становится менее, а не более симметричной, если мы рассматриваем ее поближе?

Самыми глубоко встроенными в современную теорию симметриями являются те, которые происходят от эйнштейновский СТО и ОТО. Самой основной из них является относительность инерциальных систем отсчета. По существу, это принцип Галилея, и он был основополагающей идеей физики с семнадцатого столетия. Он говорит, что мы не можем отличить движение с постоянной скоростью и направлением от покоя. Этот принцип отвечает за факт, что мы не чувствуем движения Земли или наше движение в самолете, двигающемся в небе с постоянной скоростью. Пока нет ускорения, вы не можете почувствовать своего собственного движения. Другой способ выразить это заключается в том, что не имеется привилегированного наблюдателя и нет привилегированной системы отсчета: пока ускорение отсутствует, один наблюдатель столь же хорош, как и другой.

Эйнштейн в 1905 сделал то, что применил этот принцип к свету. Следствием было то, что скорость света должна рассматриваться как константа вне зависимости от движения источника света или наблюдателя. Не имеет значения, как мы движемся друг относительно друга, вы и я определим у фотона в точности одинаковую скорость. Это основа эйнштейновской СТО.

Имея СТО, мы можем сделать много предсказаний о физике элементарных частиц. Вот одно, касающееся космических лучей. Это сообщество частиц, как мы уверены, в большей части протонов, которые путешествуют через вселенную. Они достигают верхних слоев атмосферы Земли, где сталкиваются с атомами в воздухе, производя ливни других видов частиц, которые могут быть обнаружены на поверхности. Никто не знает источника этих космических лучей, но чем выше их энергия, тем реже они попадаются. Они наблюдались при энергиях, более чем в 100 миллионов раз больших, чем масса протона. Чтобы иметь такую энергию, протон должен двигаться очень, очень близко к скорости света – пределу скорости, который в соответствии с СТО ни одной частице не позволено преодолеть.

Мы убеждены, что космические лучи приходят от удаленных галактик; если так, они должны были путешествовать через вселенную миллионы, а, возможно, миллиарды световых лет, прежде чем прибыли сюда. Давно в 1966 два советских физика Георгий Зацепин и Вадим Кузьмин и (независимо) физик из Корнелльского университета Кеннет Грейзен сделали выдающееся предсказание по поводу космических лучей, используя только СТО.[85] Это предсказание, обычно известное как предсказание GZK (ГЗК), достойно описания, поскольку оно только в настоящее время проверяется. Это самый экстремальный тест СТО, который когда-либо делался. Это, фактически, первый тест приближения СТО к планковскому масштабу, масштабу, на котором мы можем увидеть эффекты квантовой теории гравитации.

Хорошие ученые получают преимущество от всех инструментов, которые есть в их распоряжении. Грейзен, Зацепин и Кузьмин поняли, что мы имеем доступ к лаборатории, в гигантское количество раз превосходящей все, что мы когда-либо сможем построить на Земле, – к самой вселенной. Мы можем детектировать космические лучи, которые достигают Земли после путешествия в миллиарды лет через значительную часть вселенной. Когда они путешествуют, очень малые эффекты – эффекты, которые могли бы быть слишком мелкими, чтобы показаться в земных экспериментах, – могут увеличиться до точки, где мы можем их увидеть. Если мы используем вселенную как экспериментальный инструмент, мы сможем заглянуть намного глубже в структуру природы, чем люди когда-либо представляли.

Ключевой момент в том, что пространство, через которое путешествуют космические лучи, не пусто; оно заполнено космической микроволновой фоновой радиацией. Грейзен и советские ученые поняли, что протоны с энергией больше, чем особая величина, будут взаимодействовать с фотонами фоновой радиации и что это взаимодействие будет создавать частицы (вероятнее всего, пионы, они же пи-мезоны). Это создание частиц требует энергии, а, поскольку энергия сохраняется, высоко-энергичные протоны будут замедляться. Таким образом, пространство в результате непрозрачно для прохождения любых протонов, которые несут энергии больше, чем необходимо для создания пионов.

Следовательно, пространство функционирует как фильтр. Протоны, составляющие космические лучи, могут путешествовать, только если они имеют энергии меньше, чем это требуется, чтобы создать пионы. Если они имеют больше, они делают пионы и замедляются, и так происходит до тех пор, пока протоны не замедлятся до такой точки, в которой они больше не смогут делать пионы. Это выглядит, как если бы вселенная устанавливала предел скорости для протонов. Грейзен, Зацепин и Кузьмин предсказали, что протоны с энергией больше, чем энергия, необходимая для того, чтобы сделать пионы таким способом, не будут достигать Земли. Энергия, при которой они предсказали, что будет происходить создание пиона, составляет около миллиардной доли энергии Планка (1019 ГэВ) и называется отсечкой GZK.

Это гигантская энергия, которая ближе к энергии Планка, чем любая другая энергия, которую мы знаем. Она более чем в 10 миллионов раз превышает энергию, которая будет достигнута на самых усложненных ускорителях частиц, планируемых в настоящее время.

Предсказание GZK обеспечивает строгий тест СТО Эйнштейна. Оно зондирует теорию на намного более высокой энергии и на скорости, более близкой к скорости света, чем это было сделано или даже возможно на Земле. В 1966, когда было сделано предсказание GZK, можно было наблюдать только космические лучи с энергиями намного ниже, чем предсказанная отсечка, но недавно были построены несколько инструментов, которые могут детектировать частицы космических лучей при или даже выше предсказанной отсечки. Один такой эксперимент, названный AGASA (по Akeno Giant Air Shower Array – Массив гигантских атмосферных ливней Акено), осуществленный в Японии, сообщает, по меньшей мере, о дюжине таких экстремальных событий. Энергия, заключавшаяся в этих событиях, превышает 3 х 1020 электрон-вольт – грубо это равно энергии, которую подающий вкладывает в быстрый мяч в бейсболе, но вся она переносится одним протоном.

Эти события могут быть сигналом, что СТО нарушается при экстремальных энергиях. Сидни Колеман и Шелдон Глэшоу предположили в конце 1990х, что нарушение СТО могло бы повысить энергию, необходимую для создания пиона, таким образом, повышая энергию отсечки GZK и позволяя протонам более высоких энергий достигать детекторов на Земле.[86]

Это не единственное возможное объяснение наблюдению таких высоко-энергичных протонов из космических лучей. Возможно, что они сами происходят близко от Земли, так что у них нет времени, чтобы быть замедленными через взаимодействие с космическим микроволновым фоном. Это можно было бы проверить, увидев, что протоны, о которых идет речь, прибывают из любого привилегированного места в небе. До сегодняшнего дня нет таких свидетельств, но возможность остается.

Есть также возможность, что эти экстремальные высоко-энергичные частицы совсем не являются протонами. Они могли бы быть пока не известными видами стабильных частиц, с массой, намного большей, чем у протона. Если это так, это тоже было бы крупное открытие.

Конечно, всегда возможно, что ошибочен эксперимент. Команда AGASA сообщает, что их измерения энергии точны с неопределенностью в 25 процентов, что является большим процентом ошибки, но все еще не достаточным, чтобы объяснить существование высоко-энергичных событий, которые они видят. Однако, их оценка степени точности их эксперимента тоже могла быть ошибочной.

К счастью, проводимый в настоящее время эксперимент разрешит рассогласования. Это Детектор космических лучей Аугера, уже запущенный в работу в пампасах западной Аргентины. Если детекторы Аугера подтвердят японские наблюдения, и если другие возможные объяснения могут быть опущены, это было бы самым важным открытием последних ста лет – первое нарушение основных теорий, содержащих в себе научную революцию двадцатого столетия.

Что означает наблюдать частицы космических лучей с такой экстремальной энергией? Когда частица такой энергии ударяется о верхние слои атмосферы, она производит ливень других частиц, которые проливаются вниз на площадь во много квадратных километров. Эксперимент Аугера состоит из сотен детекторов, занимающих более 3000 квадратных километров аргентинских пампасов. Также на этой площади несколько световых сенсоров высокого разрешения сканируют небо, чтобы захватить свет, произведенный ливнем частиц. Объединяя сигналы, полученные от всех этих детекторов, исследователи Аугера могут определить энергию исходной частицы, которая врезалась в атмосферу, точно так же, как направление, с которого она прибыла.

Как об этом пишут, обсерватория Аугера только выпустила свои первые данные. Хорошая новость, что эксперимент работает хорошо, но все еще не вполне достаточно данных, чтобы решить, имеется ли отсечка, предсказанная на основе СТО, или нет. Все еще разумно надеяться, что по истечении нескольких лет будет достаточно данных, чтобы решить проблему.

Даже если команда Аугера объявит, что СТО остается жизнеспособной, одна эта находка будет самой важной в фундаментальной физике за последние двадцать пять лет – это значит, со времен неудачи поиска распада протона (см. главу 4). Долгая темная эра, во время которой теория развивалась без руководства со стороны эксперимента, наконец, закончится. Но если Аугер откроет, что СТО не полностью верна, это возвестит приход новой эры в фундаментальной физике. Стоит уделить некоторое время, чтобы рассмотреть последствия такой революционной находки и куда она может привести.

 

 

Источник <http://www.rodon.org/sl/nsfvtsunichzes/>