Сверхмассивный пульсирующий белый карлик

На модерации Отложенный

Американские исследователи заявили об открытии сверхмассивного пульсирующего белого карлика. Открытие этого, в общем, уникального объекта было сделано с помощью пары небольших телескопов, диаметром всего 1,5-2 метра. Главное отличие этого объекта от его многочисленных собратьев заключается даже не столько в массе (в два раза большей, чем обычная), сколько в особенностях внутреннего строения. И эти особенности, как надеются ученые, можно будет детально изучить благодаря другому его обнаруженному свойству — сейсмическим пульсациям. Примерно так же сейсмологи изучают и структуру Земли.

Планетарная туманность M57 «Кольцо». Источник в центре — белый карлик
 
Планетарная туманность M57 «Кольцо». Источник в центре — белый карлик
 
 

Детальные спектральные наблюдения относительно яркого белого карлика GD 518 в созвездии Дракона проводились в 2011 и марте-апреле 2013 года. Целью исследователей было определение физических параметров этой звезды: температуры, массы, свойств атмосферы и пр. В результате оказалось, что они имеют дело с объектом массой в 1,2 массы Солнца. Это в два раза больше типичной массы для белого карлика и лишь немногим меньше критического предела в 1,4 массы Солнца (так называемого предела Чандрасекара), за которым типичный белый карлик теряет гидростатическое равновесие и коллапсирует в более плотную нейтронную звезду.

В два раза большая масса объекта легко объясняется тем, что прародительницей GD 518 была звезда с массой в 7-10 масс Солнца, в то время как обычные его собратья получаются из звезд с меньшими массами. Последних существенно больше, и поэтому мы заведомо имеем дело с редким объектом. Редким же можно назвать и его внутреннее строение.

Дело в том, что химический состав белого карлика определяется тем, на каком этапе (на каком из химических элементов) закончились термоядерные реакции внутри звезды-прародительницы.

Если первоначальная масса звезды не очень велика (скажем, несколько масс Солнца), то ядерный котел потухнет после выгорания гелия, а получившееся в результате вырожденное ядро звезды окажется углеродно-кислородным. Температура и давление в недрах такой звезды будут недостаточными для того, чтобы запустить следующую цепочку термоядерных реакции и зажечь углерод. Поэтому впоследствии, после сброса звездой внешней оболочки (планетарной туманности), это ядро останется в виде углеродно-кислородного белого карлика.

В другом случае, более редком, когда масса звезды-прародительницы приближается к 10 массам Солнца, углерод и кислород в ее недрах могут быть дальше переработаны в более тяжелые элементы, в частности неон и магний. И тогда возможен такой сценарий эволюции звезды, что ее конечной стадией станет образование кислородно-углеродно-магниевого белого карлика. Он будет иметь большую массу, другой химический состав и окажется в большей степени кристаллизован, нежели его углеродно-кислородный родственник.

Именно такой объект и обнаружили ученые. И что особенно примечательно, оказалось, что он подвержен значительным пульсациям. По всему его объему, с периодом в несколько сотен секунд, проходят звуковые волны, заставляя объект в каком-то смысле «звенеть». Этот «звон» и влияет на его наблюдаемую яркость, меняя ее с периодом пульсаций. Эти изменения позволяют изучать свойства акустических волн, распространяющихся внутри редкого белого карлика, а значит, и изучать его внутреннюю структуру. Почти так же, как сейсмологи исследуют внутреннее строение нашей планеты.

Авторы статьи (объемом всего лишь 5 страниц) весьма детально описывают свои наблюдения, оценку физических параметров карлика, детали переменности его излучения, обосновывают свои выводы. Но все же это статья об открытии, поэтому глубокий физический анализ они предоставляют будущим исследователям.