В ожидании сверхновой
На модерации
Отложенный
Американские астрономы опубликовали работу
о том, почему нам нужно ждать следующую вспышку сверхновой в нашей Галактике и как к этому событию подготовиться, чтобы извлечь из него максимум информации.
По современным представлениям, сверхновые звезды в галактике наподобие нашей взрываются по крайней мере раз в столетие (а то и в несколько раз чаще). Вспышка сверхновой может иметь разные причины, но почти всегда это – драматический финал жизни звезды, сопровождаемый коллапсом ее ядра, сильнейшим взрывом и ярким свечением. Последнее может длиться несколько месяцев и по яркости превосходить суммарную яркость всей галактики.
Понятно, что не заметить такой «фейерверк», случившийся по соседству, нельзя. И те немногие сверхновые, которые взрывались в нашей Галактике за последнее тысячелетие, порой были видны даже днем. Однако в последний раз в нашей Галактике сверхновая, которая достоверно наблюдалась, вспыхнула более 400 лет назад — в 1604 году. В результате получилось так, что в то самое время, когда астрономы, наконец, вооружились телескопами (а сегодня — еще и космическими), научились проводить наблюдения во всем электромагнитном диапазоне (от радио до гамма-излучения), когда они способны исследовать еще и поток нейтрино от вспышки (да и вообще понимают, что такое нейтрино), сверхновые в нашей Галактике взрываться перестали. Ну или взрывались незаметно для нас — впрочем, вероятность этого, по оценкам авторов статьи, крайне мала.
Вспышка сверхновой 1987A 24 февраля 1987 года. Справа — та же область до вспышки
Те вспышки, наблюдая которые ученые проверяют свои теории и счет которых идет уже на тысячи, вспыхивали в других галактиках. Подчас весьма далеких. Ближайшая из них — сверхновая 1987A — вспыхнула в Большом Магеллановом Облаке, на расстоянии 50 килопарсек от нас (это в полтора раза больше размеров нашей Галактики).
И удаленность этих событий, даже при их колоссальной светимости, превращает их все же в не очень яркие объекты и не позволяет изучить их так подробно, как хотелось бы. Например — получить детальный спектр или исследовать быструю переменность. Поэтому наша нынешняя модель вспышки сверхновой — модель поведения вещества в столь экстремальных условиях — еще далека от завершения. Вплоть до того, что в научных статьях (включая, кстати, и обсуждаемую) можно встретить такие вопросы, на которые пока нет ответа, как «Почему вообще взрываются сверхновые?» «Каков в деталях механизм взрыва?». И понятно, что подробное исследование близкой вспышки представляется очень важным.
В первую очередь, отмечают авторы, необходимо отслеживать поток нейтрино. Собственно, сверхновая и начинается всплеском потока этих частиц. (Здесь нужно оговориться, что авторы в основном рассуждают о так называемых коллапсирующих сверхновых, которых большинство, — именно для них характерен первоначальный выброс нейтрино). Они образуются в недрах звезды в последние моменты ее «жизни» и беспрепятственно выходят наружу через ее оболочку со скоростью, практически равной скорости света.
При этом электромагнитные кванты — фотоны — оказываются как бы «запертыми» под оболочкой звезды, и поэтому первое, что регистрирует наблюдатель, — это всплеск нейтрино. Длится он всего несколько десятков секунд. Но будучи зарегистрированным нейтринным телескопом типа японского Супер-Камиоканде, он позволит приблизительно восстановить направление на небе, в котором следует ожидать скорую вспышку сверхновой. Таковая может произойти как через несколько дней, так и через несколько минут после регистрации нейтрино. Поэтому реагировать нужно быстро.
В этом направлении, на следующем шаге, должны развернуться космические рентгеновские и гамма-телескопы. Дело в том, что самое начало вспышки будет ознаменовано относительно коротким (секунды-часы) всплеском высокоэнергетичного излучения — этот всплеск является следствием высвечивания энергии ударной волны, прошедшей по оболочке умирающей звезды. И только после этого начнет разгораться характерное яркое свечение, когда запертые фотоны начнут постепенно выходить наружу.
Нейтринный телескоп Super-Kamiokande
Очень важно, считают авторы, не пропустить именно эти ранние этапы вспышки. До сих пор они наблюдались всего несколько раз, так как такие наблюдения сложно проводить в силу неожиданности и удаленности события. Но в них заложена масса информации о физике вспышки сверхновой.
Что еще мы ожидаем от наблюдений близкой к нам сверхновой? Мы будем достоверно знать, какая именно звезда взорвалась. По оценкам авторов, с вероятностью большей 90 процентов звезда-прародитель следующей вспышки уже попала в один из наших многочисленных обзоров неба. И худо-бедно, но изучена: мы знаем ее яркость и цвет. Кроме того, есть шанс пронаблюдать одну из «неудавшихся сверхновых». Это похожее по физике событие, которое не обязательно сопровождается сильным взрывом. Например, если масса звезды, завершающей свой жизненный цикл, весьма велика, то ее ядро в ходе коллапса может превратиться в массивную черную дыру со столь сильной гравитацией, что ни оболочка звезды, ни «запертые» кванты света практически не успеют разлететься в пространство, а сразу будут затянуты под горизонт событий. А с точки зрения наблюдателя, одна из звезд просто «тихо» исчезнет с небосвода. Однако всплеск нейтрино все равно будет фиксироваться.
Авторы работы провели достаточно обширное моделирование для того, чтобы оценить наши шансы зарегистрировать разные стадии близкой сверхновой, «громкой» или «тихой». И результаты их моделирования весьма обнадеживают. С массой существующих телескопов мы не пропустим вспышку с вероятностью близкой к 100 процентам. И с очень большой вероятностью сможем продолжать наблюдения даже днем. Но для большей уверенности авторы предлагают вооружиться еще серией небольших инфракрасных телескопов, которые могли бы заниматься мониторингом неба, чтобы не пропустить самые ранние этапы вспышки, следующие за всплеском нейтрино.
Стоимость таких телескопов (десятки тысяч долларов), по сравнению с их большими собратьями, невелика, говорят авторы. И подчас они доступны даже любителям астрономии.
Комментарии
Они меня не в Корзину.
Они меня убили.
А эта астрономическая галиматья интересна только узким специалистам. Да она и не достоверна. Всё в космосе происходит иначе. И если бы дали развитие моей теории, то давно бы пересмотрели и чёрные дыры, и тёмную материю, и всё остальное.