В Сколтехе создали новые материалы для супераккумуляторов
На модерации
Отложенный
Категория "Хорошие новости для России"
в сообществе "Политика, экономика, общество (без банов)"
Производство аккумуляторных батарей.
Источник изображения: Департамент внешних коммуникаций Фонда развития промышленности
Новый натрий-содержащий оксид – перспективный катодный материал для натрий-ионных аккумуляторов. А созданные в России полимерные катоды предназначены для сверхбыстрых аккумуляторов.
Ученые Сколтеха и их коллеги из Франции, США, Швейцарии и Австралии синтезировали и изучили свойства нового перспективного катодного материала Na(Li1/3Mn2/3)O2 для натрий-ионных аккумуляторов, которые в будущем смогут стать дополнением к их литий-ионным аналогам или даже прийти им на смену. Статья с описанием этой разработки ученых опубликована в журнале Nature Materials.
Сегодня литий-ионные аккумуляторы не только широко используются в бытовой электронике, но и являются движущим фактором развития электрического транспорта. Однако мировые запасы лития весьма ограничены, а технологии его добычи экологически небезопасны, поэтому ученые и инженеры во всем мире уже давно заняты поиском других, более эффективных, надежных и экономичных решений в области хранения электроэнергии.
Одно из таких альтернативных решений — технология натрий-ионных аккумуляторов. Значительно большие запасы натрия по сравнению с литием позволяют существенно снизить экономические издержки при его добыче и переработке, что приводит к уменьшению цены конечного устройства – аккумулятора. Тем не менее, разработчикам пока не удалось создать натрий-ионный аккумулятор с достаточно высокой плотностью энергии и стабильностью работы. В настоящее время в лабораториях по всему миру ведутся работы, направленные на создание новых катодных материалов на основе натрия с оптимальными составом и структурой.
Директор Центра энергетических технологий (CEST) Сколтеха профессор Артем Абакумов и аспирант Анатолий Морозов вошли в состав международной группы ученых, которая исследовала запатентованное компанией Рено соединение Na(Li1/3Mn2/3)O2. В ходе исследования было показано, что оно является перспективным катодным материалом благодаря высокой удельной плотности энергии, отсутствия падения рабочего напряжения при длительном циклировании и устойчивости к воздействию влаги.
«Мы провели целый комплекс исследований различными передовыми методами просвечивающей электронной микроскопии (ПЭМ), используя оборудование нашего Центра коллективного пользования «Визуализация высокого разрешения». Мы изучили кристаллическую структуру соединения NaLi1/3Mn2/3O2 методом электронной дифракции и выполнили её прямую визуализацию при помощи сканирующей ПЭМ с атомным разрешением. Кроме того, мы провели анализ строения Na(Li1/3Mn2/3)O2 в различных степенях заряда с помощью ПЭМ и проследили, как меняется его кристаллическая структура в процессе электрохимического циклирования», − отмечает Анатолий Морозов.
В частности, исследователи обнаружили, что обратимая (разрядная) емкость нового соединения составляет 190 мАч/г – это относительно высокое значение для катодных материалов натрий-ионных аккумуляторов. Более того, по словам Морозова данные значения разрядной ёмкости сохраняются на протяжении большого количества циклов заряда/разряда, а сам материал устойчив к воздействию влаги, что не характерно для подобных соединений. «Также при продолжительном электрохимическом циклировании у соединения Na(Li1/3Mn2/3)O2 не наблюдалось значительного снижения рабочего напряжения, что является главным недостатком аналогичных слоистых катодных материалов с повышенным содержанием лития», −поясняет Морозов.
Однако помимо преимуществ, описанных выше, NaLi1/3Mn2/3O2 имеет один недостаток − большое значение гистерезиса напряжения в процессе заряда и разряда аккумулятора, что приводит к снижению энергоэффективности катодного материала и может стать препятствием на этапе коммерческого внедрения. «Мы полагаем, что появление гистерезиса напряжения связано с миграцией марганца в процессе работы аккумулятора. Это означает, что в будущем для решения этой проблемы необходимо будет разработать модель упорядочения катионов и найти способ управлять этим процессом», − добавляет Морозов.
«В своей работе исследователи использовали установленный в ЦКП электронный микроскоп Titan Themis Z, с помощью которого можно визуализировать отдельные атомы в кристаллической решетке материала, исследовать его структуру, а также взаимосвязи между структурой и свойствами материала. Однако для получения серьезных научных результатов даже самого современного оборудования недостаточно: мы считаем, что главный секрет успеха кроется в высоком профессиональном уровне исследователей, студентов и аспирантов Сколтеха, работающих в нашем ЦКП, поэтому мы вкладываем много сил и средств в их профессиональное развитие. Директор CEST профессор Абакумов одновременно является научным руководителем нашего ЦКП, что способствует активному сотрудничеству между командой ЦКП и учеными Сколтеха и обеспечивает нашему институту значительные конкурентные преимущества при выполнении сложных научно-исследовательских проектов и разработке уникальных технологий», − отмечает директор ЦКП «Визуализация высокого разрешения» Ярослава Шахова.
В исследовании также приняли участие специалисты Коллеж де Франс, Университета Сорбонны, компании Рено, Сети электрохимического хранения энергии (RS2E), Орлеанского университета, Университета По и региона Адур и Университета Монпелье (Франция);Национальной лаборатории им. Э. Лоуренса в Беркли и Университета Иллинойса в Чикаго (США); Института Пауля Шеррера (Швейцария); Сиднейского университета, Австралийского центра по исследованию рассеивания нейтронного и рентгеновского излучения и Организации по ядерной науке и технике Австралии.
Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов
Спрос на литий-ионные аккумуляторы постоянно растет, но сырье для их изготовления ограничено, и ученые ищут другие варианты этой технологии. Российские исследователи из Сколтеха, РХТУ и ИПХФ синтезировали новые катодные материалы на основе полимеров и испытали их в литиевых двухионных батареях. Они показали, что такие катоды могут выдерживать до 25000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных аккумуляторов. Также с применением новых катодов могут быть созданы калиевые двухионные аккумуляторы, не использующие дорогостоящий литий. Результаты работы опубликованы в журнале Energy Technology.
Человечество производит и потребляет все больше электричества, и вместе с этим растет спрос на энергонакопители, потому что многие устройства часто работают в автономном режиме. Литий-ионные аккумуляторы могут давать большую мощность, обеспечивая при этом сравнительно высокие скорости разряда и заряда, а также хранят достаточно много энергии в расчете на единицу своей массы. Поэтому их применяют в качестве накопителей энергии не только в электронике и электротранспорте, но уже и в масштабах глобальных энергосетей. Например, в Австралии построят сеть огромных энергонакопителей на основе литий-ионных аккумуляторов, чтобы запасать излишки энергии, произведенной солнечными и ветровыми электростанциями.
Но если литий-ионных аккумуляторов будет становиться больше, то рано или поздно закончится сырье для их производства. Например, катоды этих батарей часто содержат кобальт, 60% добычи которого приходится только на одну страну — ДР Конго, и поэтому если производители захотят делать еще больше аккумуляторов цена на кобальт может вырасти во много раз. Похожая ситуация и с литием – на его добычу уходит так много воды, что это может стать серьезной экологической проблемой. Поэтому исследователи ищут новые энергонакопители, которые с одной стороны работают по принципу литий-ионных аккумуляторов и сохраняют их преимущества, а с другой используют более доступное сырье. В работе ученых из Сколковского института науки и технологий, РХТУ им. Д.И. Менделеева и ИПХФ РАН была использована перспективная постлитиевая технология двухионных аккумуляторов,в электрохимических процессах которых задействованы как анионы, так и катионы электролита, что в разы повышает скорости заряда батарей по сравнению с литий-ионными. При этом в качестве катодов тестировались материалы на основе полимерных ароматических аминов, которые можно синтезировать из различных органических соединений.
«У нашей группы уже были работы по полимерным катодам для сверхбыстрых аккумуляторов с хорошей емкостью, которые можно заряжать и разряжать за несколько секунд, но хотелось большего», – рассказывает первый автор работы, аспирант Сколтеха, Филипп Обрезков. «Среди прочих, раньше мы использовали линейные полимеры, у которых каждое мономерное звено образует связи только с двумя соседями, а в этой работе мы продолжили изучение новых разветвленных полимеров, у которых каждое звено может образовывать связи как минимум с тремя другими звеньями. Они формируют объемные сетчатые структуры, которые обеспечивают более быструю кинетику электродных процессов. С электродами из таких материалов аккумуляторы могут еще быстрее заряжаться и разряжаться».
Стандартный литий-ионный аккумулятор — это ячейка объем которой заполнен литий-содержащим электролитом и разделен сепаратором на две части – в одной находится анод, а в другой катод. В заряженном состоянии большинство атомов лития встроены в кристаллическую структуру анода, а при разряде они выходят из анода и через сепаратор проникают в катодный материал. В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита (то есть катионы лития), но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счет этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные.
Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития.
Исследователи синтезировали два новых разветвленных полимера — один был сополимером дигидрофеназина и дифениламина (PDPAPZ), а другой – дигидрофеназина и фенотиазина (PPTZPZ). На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий — все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов.
Полуячейки с PPTZPZ показали скромные рабочие характеристики. PDPAPZ напротив оказался достаточно удачным материалом: литиевые полуячейки с этим полимером могли сравнительно быстро заряжаться и разряжаться, а также показали хорошую стабильность. Они сохраняли до трети своей емкости даже после 25 тысяч рабочих циклов – если бы обычный аккумулятор в телефоне обладал такой же стабильностью, то его можно было бы ежедневно заряжать и разряжать на протяжении 70 лет. Калиевые же полуячейки на основе PDPAPZ показали хорошую плотность энергии — 398 Вт-ч/кг. Для сравнения в общераспространенных литиевых ячейках эта величина составляет 200–250 Вт-ч/кг, но в этой цифре также учитывается масса анода и электролита. Таким образом, российские ученые показали, что разработанные полимерные катодные материалы можно использовать для создания эффективных литиевых и калиевых двухионных аккумуляторов.
Комментарии
И на фига им сдалось Сколково?