В точках Лагранжа из темной и светлой материи образуются новые элементы таблицы Менделеева.
На модерации
Отложенный
Светлая материя - это электроны.
Темная материя это ядра.
Точки Лагра́нжа, точки либра́ции (лат. librātiō — раскачивание) или L-точки — точки в системе из двух массивных тел, в которых третье тело с пренебрежимо малой массой, не испытывающее воздействия никаких других сил, кроме гравитационных, со стороны двух первых тел, может оставаться неподвижным относительно этих тел.
Более точно точки Лагранжа представляют собой частный случай при решении так называемой ограниченной задачи трёх тел — когда орбиты всех тел являются круговыми и масса одного из них намного меньше массы любого из двух других. В этом случае можно считать, что два массивных тела обращаются вокруг их общего центра масс с постоянной угловой скоростью. В пространстве вокруг них существуют пять точек, в которых третье тело с пренебрежимо малой массой может оставаться неподвижным во вращающейся системе отсчёта, связанной с массивными телами. В этих точках гравитационные силы, действующие на малое тело, уравновешиваются центробежной силой.
Точки Лагранжа получили своё название в честь математика Жозефа Луи Лагранжа, который первым[1] в 1772 году привёл решение математической задачи, из которого следовало существование этих особых точек.
Все точки Лагранжа лежат в плоскости орбит массивных тел и обозначаются заглавной латинской буквой L с числовым индексом от 1 до 5. Первые три точки расположены на линии, проходящей через оба массивных тела. Эти точки Лагранжа называются коллинеарными и обозначаются L1, L2 и L3. Точки L4 и L5 называются треугольными или троянскими. Точки L1, L2, L3 являются точками неустойчивого равновесия, в точках L4 и L5 равновесие устойчивое.
L1 находится между двумя телами системы, ближе к менее массивному телу; L2 — снаружи, за менее массивным телом; и L3 — за более массивным. В системе координат с началом отсчёта в центре масс системы и с осью, направленной от центра масс к менее массивному телу, координаты этих точек в первом приближении по α рассчитываются с помощью следующих формул[2]:
<dl>
{\displaystyle r_{1}=\left(R\left[1-\left({\frac {\alpha }{3}}\right)^{1/3}\right],0\right)}
{\displaystyle r_{2}=\left(R\left[1+\left({\frac {\alpha }{3}}\right)^{1/3}\right],0\right)}
{\displaystyle r_{3}=\left(-R\left[1+{\frac {5}{12}}\alpha \right],0\right)}
</dl>
где {\displaystyle \alpha ={\frac {M_{2}}{M_{1}+M_{2}}}},
<dl>
R — расстояние между телами,
M1 — масса более массивного тела,
M2 — масса второго тела.
</dl>
Точка L1 лежит на прямой, соединяющей два тела с массами M1 и M2 (M1 > M2), и находится между ними, вблизи второго тела. Её наличие обусловлено тем, что гравитация тела M2 частично компенсирует гравитацию тела M1. При этом чем больше M2, тем дальше от него будет располагаться эта точка.
<dl>
Пример: Объекты, которые движутся вокруг Солнца ближе, чем Земля, как правило, имеют меньшие орбитальные периоды, чем у Земли, если они не входят в зону влияния земного притяжения. Если объект находится непосредственно между Землёй и Солнцем, то действие земной силы тяжести отчасти компенсирует влияние гравитации Солнца, за счёт этого происходит увеличение орбитального периода объекта. Причём чем ближе к Земле находится объект, тем сильнее этот эффект. И наконец, на определённом приближении к планете — в точке L1 — действие земной силы тяжести уравновешивает влияние солнечной гравитации настолько, что период обращения объекта вокруг Солнца становится равным периоду обращения Земли. Для нашей планеты расстояние до точки L1 составляет около 1,5 млн км. Притяжение Солнца здесь (118 мкм/с²) на 2 % сильнее, чем на орбите Земли (116 мкм/с²), тогда как снижение требуемой центростремительной силы вдвое меньше (59 мкм/с²). Сумма этих двух эффектов уравновешивается притяжением Земли, которое составляет здесь также 177 мкм/с².
</dl><dl>
Использование
</dl>
В системе Солнце—Земля точка L1 может быть идеальным местом для размещения космической обсерватории для наблюдения Солнца, которое в этом месте никогда не перекрывается ни Землёй, ни Луной. Первым аппаратом, работавшим вблизи этой точки, был запущенный в августе 1978 года аппарат ISEE-3. Аппарат вышел на периодическую гало-орбиту вокруг этой точки 20 ноября 1978 года[3] и был сведён с этой орбиты 10 июня 1982 года (для исполнения новых задач)[4]. На такой же орбите с мая 1996 года работает аппарат SOHO. Аппараты ACE, WIND и DSCOVR находятся на квази-периодических орбитах Лиссажу́ близ этой же точки, соответственно, с 12 декабря 1997[5], 16 ноября 2001 и 8 июня 2015 года[6]. В 2016-2017 годах также в окрестностях этой точки проводил эксперименты аппарат LISA Pathfinder.[7]
Лунная точка L1 (в системе Земля — Луна; удалена от центра Земли примерно на 315 тыс.км[8]) может стать идеальным местом для строительства космической пилотируемой орбитальной станции, которая, располагаясь на пути между Землёй и Луной, позволила бы легко добраться до Луны с минимальными затратами топлива и стать ключевым узлом грузового потока между Землёй и её спутником[9].
L2
Комментарии