
Когда внезапно отключается свет и чуть позже появляется, как вы узнаете, какое время на часах нужно выставлять? Да, я про электронные часы, которые наверняка у многих из нас есть. Вы хотя бы раз задумывались о том, как регулируется время? В этой статье мы узнаем все об атомных часах и о том, как они заставляют весь мир тикать.
Радиоактивны ли атомные часы?
Атомные часы показывают время лучше любых других часов. Они показывают время лучше, чем вращение Земли и движение звезд. Без атомных часов GPS-навигация была бы невозможной, Интернет не был бы синхронизирован, а положение планет не было бы известно с достаточной точностью для космических зондов и аппаратов.
Атомные часы не радиоактивны. Они не полагаются на атомный распад. Более того, у них есть пружина, как и у обычных часов. Самое большое отличие стандартных часов от атомных в том, что колебания в атомных часах происходят в ядре атома между окружающими его электронами. Эти колебания сложно назвать параллелью балансовому колесику в заводных часах, однако оба типа колебания можно использовать для отслеживания уходящего времени. Частота колебаний внутри атома определяется массой ядра, гравитацией и электростатической «пружиной» между положительным зарядом ядра и облаком электронов вокруг него.
Какие типы атомных часов мы знаем?
Сегодня существуют различные типы атомных часов, однако построены они на одних и тех же принципах. Основное различие связано с элементом и средствами обнаружения изменений уровня энергии. Среди разных типов атомных часов существуют следующие:
- Цезиевые атомные часы, использующие пучки атомов цезия. Часы разделяют атомы цезия с разными энергетическими уровнями магнитным полем.
- Водородные атомные часы поддерживают атомы водорода на нужном энергетическом уровне в контейнере, стены которого сделаны из специального материала, поэтому атомы не теряют высокоэнергетическое состояние слишком быстро.
- Рубидиевые атомные часы, самые простые и компактные из всех, используют стеклянную ячейку с рубидиевыми газом.
Самые точные атомные часы сегодняшнего дня используют атом цезия и обычное магнитное поле с детекторами. Кроме того, атомы цезия сдерживаются лазерными лучами, что уменьшает небольшие изменения частоты из-за эффекта Доплера.
Как работают атомные часы на основе цезия?
У атомов есть характерная частота колебаний. Знакомый вам пример частоты — это оранжевое свечение натрия в поваренной соли, если ее бросить в огонь. У атома есть много разных частот, некоторые в радиодиапазоне, некоторые в диапазоне видимого спектра, а некоторые между этими двумя. Цезий-133 чаще всего выбирают для атомных часов.
Чтобы вызвать резонанс атомов цезия в атомных часах, нужно точно измерить один из переходов или резонансную частоту. Обычно это делается путем блокировки кварцевого генератора в основном микроволновом резонансе атома цезия. Этот сигнал находится в микроволновом диапазоне радиочастотного спектра и обладает той же частотой, что и сигналы спутников прямого вещания.
Инженеры знают, как создать оборудование для этой области спектра, в мельчайших подробностях.
Чтобы создать часы, цезий сначала нагревают так, что атомы выпариваются и проходят через трубу с высоким вакуумом. Сначала они проходят через магнитное поле, которое выбирает атомы с нужным энергетическим состоянием; потом они проходят через интенсивное микроволновое поле. Частота микроволновой энергии скачет туда-сюда в узком диапазоне частот, так что в определенный момент она достигает частоты 9 192 631 770 герц (Гц, или циклов в секунду). Диапазон микроволнового генератора уже близок к этой частоте, поскольку ее производит точный кварцевый генератор. Когда атом цезия получает микроволновую энергию нужной частоты, он меняет свое энергетическое состояние.
В конце трубки другое магнитное поле отделяет атомы, которые изменили свое энергетическое состояние, если микроволновое поле было нужной частоты. Детектор в конце трубки дает выходной сигнал, пропорциональный количеству атомов цезия, которые в него попадают, и достигает пика, когда микроволновая частота достаточно верна. Этот пиковый сигнал нужен для корректировки, чтобы привести кварцевый генератор, а значит и микроволновое поле к нужной частоте. Эта заблокированная частота затем делится на 9 192 631 770, чтобы дать знакомый всем один импульс в секунду, нужный реальному миру.
Когда изобрели атомные часы?
В 1945 году профессор физики Колумбийского университета Исидор Раби предложил часы, которые можно сделать на основе техники, разработанной в 1930-х годах. Она называлась атомный пучок магнитного резонанса. К 1949 году Национальное бюро стандартов объявило о создании первых в мире атомных часов на основе молекулы аммиака, колебания которой и считывались, а к 1952 году — создала первые в мире атомные часы на основе атомов цезия, NBS-1.
В 1955 году Национальная физическая лаборатория в Англии построила первые часы на основе пучка цезия в качестве источника калибровки. В течение следующего десятилетия создавались более совершенные часы. В 1967 году в ходе 13 Генеральной конференции по мерам и весам была определена СИ секунды на основе вибраций в атоме цезия. В мировой системе хронометража не было точнее определения, чем это. NBS-4, самые стабильные в мире цезиевые часы, были завершены в 1968 году и использовались до 1990 года.
В 1999 году NBS, переименованная в NIST, начала работать с часами NIST-F1, точность которых допускала погрешность на одну секунду в 20 миллионов лет.

Как измеряется атомное время?
Правильная частота для резонанса частицы цезия сегодня определена международным соглашением и составляет 9 192 631 770 герц, поэтому при делении выходного сигнала на это число должен получаться 1 Гц, или 1 цикл в секунду.
Атомные часы улучшили точность измерения времени в миллион раз по сравнению с астрономическими методами. На сегодняшний день самый точный атомный хронометр теряет одну секунду в пять миллиардов лет.
Комментарии
Где время, которое замедляется и ускоряется?
В атоме цезия 55 электронов на 28 орбиталях. Можно сказать, что атом колеблется из-за того что электроны бегают по по орбиталям, но это будет грубой ошибкой. Если бы атом колебался электронами на орбиталях, то он излучал бы то самое, что в статье названо спектром. Но в основном состоянии атом не излучает. То есть не излучает в принципе, хотя обязан был делать это если бы колебался.
На само деле атом излучает или поглощает квант электромагнитной энергии только при переходе электрона с одного уровня энергии на другой. Внутренние электронные оболочки атома очень стабильны, и чтобы вытащить оттуда электрон на внешнюю оболочку надо затратить огромную энергию, соответствующую жесткому гамма-излучению. А вот единственный электрон внешней s-орбитали переходит на более высокие p- и d-орбитали легче. Но все равно энергия требуется слишком высокая - соответствующая видимому излучению. А нам удобнее использовать даже не инфракрасное, а вообще радиоизлучение. В атоме цезия такой крохотной энергии соответствует сверхтонкое расщепления d-уровня. То есть там есть пять d-орбиталей разной формы, но с почти одинаковой эне...
Все процессы в Природе, это часы. Когда это было доказано экспериментально?
И если исходить из этой теории о все часах, то мы одним процессом измеряем другой, а так как все процессы, это часы, то одним временем измеряем другое. Это уже похоже на белиберду.
Все же на показания измерительных приборов влияет гравитация (гравитационный потенциал), так?
Отсюда простой вопрос: где же само время, как физическая величина, как четвертое измерение?
И напоследок, совсем глупый вопрос: если в Природе все процессы, это часы, то что Вы подразумеваете под значением "плохие часы"?
Скажите, краска на авто выцветает от времени?
Естественно, процессы измеряется процессами, как длина измеряется длиной.
Авто можно покрасить разной краской, но, обычно, краски не выцветают от времени. Хотя случаются и такие казусы, например, у Врубеля.
Гравитация повлияла на ход процесса, в тех же атомных часах или на процессы в организме человека, находящегося на орбите или движущегося с высокой скоростью, где же во всем этом время?
Упростим задачу: когда было открыто время?