Newsland.com – место, где обсуждают новости.
Социальный новостной агрегатор №1 в Рунете: самое важное о событиях в России и в мире. Newsland.com - это современная дискуссионная платформа для обмена информацией и мнениями.
В режиме 24/7 Newsland.com информирует о самом важном и интересном: политика, экономика, финансы, общество, социально значимые темы. Пользователь Newsland.com не только получает полную новостную картину, но и имеет возможность донести до аудитории собственную точку зрения. Наши пользователи сами формируют информационную повестку дня – публикуют новости, пишут статьи и комментарии.
Комментарии
Слово «вирус» образовано от лат. virus — «яд»[2]. Для обозначения агента, способного вызывать инфекционную болезнь, оно впервые было применено в 1728 году[13] до открытия вирусов Дмитрием Ивановским в 1892 году, им был введён термин фильтрующийся вирус как обозначение небактериального болезнетворного агента, способного проходить сквозь бактериальные фильтры — фильтроваться. Термин «вирион», создание которого датируется 1959 годом[14], применяется для обозначения единичной стабильной вирусной частицы, покинувшей клетку и способной инфицировать другие клетки того же типа[15
Мартин Бейеринк в своей лаборатории в 1921 году
По мере накопления данных об инфекционных заболеваниях различных организмов стало очевидно, что далеко не все из них вызываются патогенами, известными на тот момент — бактериями, протистами или микроскопическими грибками. В частности, Луи Пастер не смог найти агент, вызывающий бешенство, и предполагал, что этот патоген слишком мал, чтобы увидеть его в микроскоп[16]. В 1884 году французский микробиолог Шарль Шамберлан изобрёл фильтр (сейчас известный как фильтр Шамберлана или
В 2002 году в Нью-Йоркском университете был создан первый синтетический вирус (вирус полиомиелита)[37].
Вирусы найдены везде, где есть жизнь, и, вероятно, вирусы существуют с момента появления первых живых клеток[38]. Происхождение вирусов неясно, поскольку они не оставляют каких бы то ни было ископаемых останков и их родственные связи можно изучать только методами молекулярной филогенетики[39].
Существует три основные гипотезы происхождения вирусов[40][41]:
регрессивная гипотеза;
гипотеза клеточного происхождения;
гипотеза коэволюции.
Согласно этой гипотезе, вирусы когда-то были мелкими клетками, паразитирующими в более крупных клетках. С течением времени эти клетки предположительно утратили гены, которые были «лишними» при паразитическом образе жизни. Эта гипотеза основывается на наблюдении, что некоторые бактерии, а именно риккетсии и хламидии, представляют собой клеточные организмы, которые, тем не менее, подобно вирусам могут размножаться только внутри другой клетки. Эту гипотезу также называют гипотезой дегенерации[42][43] или гипотезой редукции[44].
Некоторые вирусы могли появиться из фрагментов ДНК или РНК, которые «высвободились» из генома более крупного организма. Такие фрагменты могут происходить от плазмид (молекул ДНК, способных передаваться от клетки к клетке) или от транспозонов (молекул ДНК, реплицирующихся и перемещающихся с места на место внутри генома)[45]. Транспозоны, которые раньше называли «прыгающими генами», являются примерами мобильных генетических элементов, возможно, от них могли произойти некоторые вирусы. Транспозоны были открыты Барбарой Мак-Клинток в 1950 году в кукурузе[46]. Эту гипотезу также называют гипотезой кочевания[6][47] или гипотезой побега[44].
Эта гипотеза предполагает, что вирусы возникли из сложных комплексов белков и нуклеиновых кислот в то же время, что и первые на Земле живые клетки, и зависят от клеточной жизни вот уже миллиарды лет. Помимо вирусов, существуют и другие неклеточные формы жизни. Например, вироиды — это молекулы РНК, которые не рассматриваются как вирусы, потому что у них нет белковой оболочки. Тем не менее, ряд характеристик сближает их с некоторыми вирусами, а потому их относят к субвирусным частицам[48]. Вироиды являются важными патогенами растений[49]. Они не кодируют собственные белки, однако взаимодействуют с клеткой-хозяином и используют её для осуществления репликации своей РНК[50]
Гипотеза мира РНК[56] и компьютерный анализ последовательностей вирусной ДНК и ДНК хозяина дают лучшее понимание эволюционных взаимоотношений между различными группами вирусов и могут помочь определить предков современных вирусов. До настоящего времени такие исследования пока не прояснили, какая из трёх основных гипотез верна[56]. Однако представляется маловероятным, чтобы все современные вирусы имели общего предка, и, возможно, в прошлом вирусы независимо возникали несколько раз по одному или нескольким механизмам, так как между различными группами вирусов имеются значительные различия в организации генетического материала[57].
Основная статья: Прионы
Прионы — это инфекционные белковые молекулы, не содержащие ДНК или РНК[58]. Они вызывают такие заболевания, как почесуха овец[59], губчатая энцефалопатия крупного рогатого скота и хроническая слабость (англ. chronic wasting disease) у оленей. К прионным болезням человека относят куру, болезнь Крейтцфельдта — Якоба и синдром Герстмана — Штраусслера — Шейнкера[60]. Прионы способны стимулировать образование собственных копий. Прионный белок способен существовать в двух изоформах: нормальной (PrPC) и прионной (PrPSc). Прионная форма, взаимодействуя с нормальным белком, способствует его превращению в прионную форму. Хотя прионы фундаментально отличаются от вирусов и вироидов, их открытие даёт больше оснований поверить в то, что вирусы могли произойти от самовоспроизводящихся молекул[61].
Вирусы как форма жизни[править | править вики-текст]
Согласно одному из определений вирусы представляют собой форму жизни, согласно другому вирусы являются комплексами органических молекул, взаимодействующими с живыми организмами. Вирусы характеризуют как «организмы на границе живого»[21]. Вирусы похожи на живые организмы в том, что они имеют свой набор генов и эволюционируют путём естественного отбора[62], а также в том, что способны размножаться, создавая собственные копии путём самосборки. Вирусы имеют генетический материал, однако лишены клеточного строения, а именно эту черту обычно рассматривают как фундаментальное свойство живой материи. У вирусов нет собственного обмена веществ
Эти капсиды состоят из одного типа капсомеров, уложенных по спирали вокруг центральной оси. В центре этой структуры может находиться центральная полость или канал. Такая организация капсомеров приводит к формированию палочковидных и нитевидных вирионов: они могут быть короткими и очень плотными или длинными и очень гибкими. Генетический материал, как правило, представлен одноцепочечной РНК (в некоторых случаях одноцепочечной ДНК) и удерживается в белковой спирали ионными взаимодействиями между отрицательными зарядами на нуклеиновых кислотах и положительными зарядами на белках. В целом, длина спирального капсида зависит от длины окружённой им нуклеиновой кислоты, а диаметр определяется размером и расположением капсомеров. Примером спирального вируса может служить вирус табачной мозаики[76].
Большинство вирусов животных имеют икосаэдрическую или почти шарообразную форму с икосаэдрической симметрией. Правильный икосаэдр является оптимальной формой для закрытого капсида, сложенного из одинаковых субъединиц. Минимальное необходимое число одинаковых капсомеров — 12, каждый капсомер состоит из пяти идентичных субъединиц. Многие вирусы, такие как ротавирус, имеют более двенадцати капсомеров и выглядят круглыми, но сохраняют икосаэдрическую симметрию. Капсомеры, находящиеся в вершинах, окружены пятью другими капсомерами и называются пентонами. Капсомеры треугольных
Продолговатыми называют икосаэдрические капсиды, вытянутые вдоль оси симметрии пятого порядка. Такая форма характерна для головок бактериофагов[78].
Форма этих капсидов ни чисто спиральная, ни чисто икосаэдрическая. Они могут нести дополнительные наружные структуры, такие как белковые хвосты или сложные наружные стенки. Некоторые бактериофаги, такие как фаг Т4, имеют комплексный капсид, состоящий из икосаэдрической головки, соединённой со спиральным хвостом, который может иметь шестигранное основание с отходящими от него хвостовыми белковыми нитями. Этот хвост действует наподобие молекулярного шприца, прикрепляясь к клетке-хозяину и затем впрыскивая в неё генетический материал вируса[79].
Некоторые вирусы окружают себя дополнительной оболочкой из модифицированной клеточной мембраны (плазматической или внутренней, такой как ядерная мембрана или мембрана эндоплазматического ретикулума). Этот дополнительный билипидный слой называется суперкапсидом. Липидная оболочка вируса испещрена белками, кодируемыми вирусными геномом и геномом хозяина; сама же мембрана, а также любые её углеводные компоненты происходят целиком из клетки-хозяина. Таким образом формируют свою оболочку вирус гриппа и ВИЧ. Инфекционность большинства вирусов, имеющих оболочку, зависит именно от этой оболочки[80].
Генетическое разнообразие у вирусов
Свойства
Параметры
Нуклеиновая кислота ДНК
РНК
И ДНК, и РНК (в различных стадиях жизненного цикла)
Форма Линейная
Кольцевая
Сегментированная
Количество цепей Одноцепочечные
Двуцепочечные
Двуцепочечные с одноцепочечными фрагментами
Полярность Положительная полярность (+)
Отрицательная полярность (−)
Двойная полярность (+/−)
Реассортимент может стать причиной появления нового высокопатогенного штамма человеческого гриппа
Вирусы демонстрируют огромное количество вариантов организации генома; в этом смысле они более разнообразны, чем растения, животные, археи и бактерии. Существуют миллионы различных типов вирусов[8], но только примерно 5000 из них были детально описаны[7]. Генетический материал вируса может быть представлен либо ДНК, либо РНК, соответственно, вирусы подразделяют на ДНК-содержащие и РНК-содержащие. Подавляющее большинство вирусов являются РНК-содержащими. Вирусы растений чаще всего содержат одноцепочечную РНК, а бактериофаги, как правило, обладают двухцепочечными ДНК
Основная статья: Жизненный цикл вируса
Типичный жизненный цикл вируса на примере вируса гепатита C
Вирусы не размножаются клеточным делением, поскольку не имеют клеточного строения. Вместо этого они используют ресурсы клетки-хозяина для образования множественных копий самих себя, и их сборка происходит внутри клетки.
Условно жизненный цикл вируса можно разбить на несколько взаимоперекрывающихся этапов (обычно выделяют 6 этапов[97]):
Репликация вирусов подразумевает, прежде всего, репликацию генома. Репликация вируса включает синтез мРНК ранних генов вируса (с исключениями для вирусов, содержащих положительную РНК), синтез вирусных белков, возможно, сборку сложных белков и репликацию вирусного генома, которая запускается после активации ранних или регуляторных генов. Вслед за этим может последовать (у комплексных вирусов с крупными геномами) ещё один или несколько кругов дополнительного синтеза мРНК: «поздняя» экспрессия генов приводит к синтезу структурных или вирионных белков.
Выход из клетки. Вирусы могут покинуть клетку после лизиса, процесса, в ходе которого клетка погибает из-за разрыва мембраны и клеточной стенки, если такая есть. Эта особенность есть у многих бактериальных и некоторых животных вирусов. Некоторые вирусы подвергаются лизогенному циклу, где вирусный геном включается путём генетической рекомбинации в специальное место хромосомы клетки-хозяйки. Тогда вирусный геном называется провирусом, или, в случае бактериофага, профагом[102]. Когда клетка делится, вирусный геном также удваивается. В пределах клетки вирус в основном не проявляет себя; однако в некоторый момент провирус или профаг может вызвать активацию вируса, который может вызвать лизис клеток-хозяев[103].
Особенности жизненного цикла различных групп
Генетический материал внутри вирусных частиц и способ его репликации, значительно отличается у различных вирусов.
ДНК-содержащие вирусы. Репликация генома у большинства ДНК-содержащих вирусов происходит в клеточном ядре. Если клетка имеет соответствующий рецептор на своей поверхности, эти вирусы проникают в клетку либо путём непосредственного слияния с клеточной мембраной (напр. герпесвирусы), либо — что бывает чаще — путём рецептор-зависимого эндоцитоза. Большинство ДНК-содержащих вирусов полностью полагаются на синтетический аппарат клетки-хозяина для производства их ДНК и РНК, а также
РНК-содержащие вирусы. Репликация таких вирусов обычно происходит в цитоплазме. РНК-содержащие вирусы можно подразделить на 4 группы в зависимости от способа их репликации. Механизм репликации определяется тем, является ли геном вируса одноцепочечным или двухцепочечным, вторым важным фактором в случае одноцепочечного генома является его полярность (может ли он непосредственно служить матрицей для синтеза белка рибосомами). Все РНК-вирусы используют собственную РНК-репликазу для копирования своих геномов[107].
Микрофотография, показывающая цитопатические эффекты, вызванные вирусом простого герпеса первого типа. Тест Папаниколау
Диапазон структурных и биохимических эффектов, оказываемых вирусом на инфицированную клетку, очень широк[110]. Они называются цитопатическими эффектами[111]. Большинство вирусных инфекций приводят к гибели клеток-хозяев. Причинами гибели могут быть лизис клетки, изменения клеточной мембраны и апоптоз[112]. Часто причиной гибели клетки является подавление её нормальной активности белками вируса, не все из которых входят в состав вирусной частицы[113].
В таксономии живой природы вирусы выделяют в отдельный таксон, образующий в классификации Systema Naturae 2000 вместе с доменами Bacteria, Archaea и Eukaryota корневой таксон Biota[124]. В течение XX века в систематике выдвигались предложения о создании выделенного таксона для неклеточных форм жизни (Aphanobionta Novak, 1930[125]; надцарство Acytota Jeffrey, 1971[126]; Acellularia[127]), однако такие предложения не были кодифицированы[128].
Вирусы, несомненно, являются самыми многочисленными биологическими объектами на Земле, и по этому показателю они превосходят все организмы, вместе взятые[119]. Они поражают все формы клеточных организмов, включая животных, растения, бактерии и грибы[7]. Тем не менее различные типы вирусов могут поражать только ограниченный круг хозяев, многие вирусы видоспецифичны. Некоторые, как, например, вирус оспы, могут поражать только один вид — людей[120], в подобных случаях говорят, что вирус имеет узкий диапазон хозяев. Напротив, вирус бешенства может поражать различные виды млекопитающих, то есть он имеет широкий диапазон хозяев[121]. Вирусы растений безвредны для животных, а большинство вирусов животных безопасны для человека[122]. Диапазон хозяев некоторых бактериофагов ограничивается одним штаммом бактерий, и они могут использоваться для определения штаммов, вызывающих вспышки инфекционных заболеваний методом фагового типирования[123].
В таксономии живой природы вирусы выделяют в отдельный таксон, образующий в классификации Systema Naturae 2000 вместе с доменами Bacteria, Archaea и Eukaryota корневой таксон Biota[124]. В течение XX века в систематике выдвигались предложения о создании выделенного таксона для неклеточных форм жизни (Aphanobionta Novak, 1930[125]; надцарство Acytota Jeffrey, 1971[126]; Acellularia[127]), однако такие предложения не были кодифицированы[128].
Классификация ICTV[править | править вики-текст]
Была разработана объединённая таксономия (универсальная система для классификации вирусов). Седьмой отчёт ICTV закрепил для первых пор понятие о виде вируса как о низшем таксоне в иерархии вирусов[131][комм. 3]. Однако к настоящему моменту была изучена лишь небольшая часть от общего разнообразия вирусов, анализ образцов вирусов из человеческого организма выявил, что около 20 % последовательностей вирусных нуклеиновых кислот ещё не было рассмотрено ранее, а образцы из окружающей среды, например, морской воды и океанского дна, показали, что подавляющее большинство последовательностей являются совершенно новыми[132].
Основными таксономическими единицами являются[133]:
Порядок (-virales) Семейство (-viridae) Подсемейство (-virinae) Род (-virus) Вид (-virus)
Основная статья: Классификация вирусов по Балтимору
Группы вирусов по Балтимору. Условные обозначения: оц — одноцепочечная, дц — двуцепочечная, РТ — ретровирус или ретроидный вирус.
Лауреат Нобелевской премии биолог Дейвид Балтимор разработал классификацию вирусов по Балтимору[35][138]. Классификация ICTV в настоящее время объединяется с классификацией по Балтимору, составляя современную систему классификации вирусов[139][140].
Эта система включает в себя семь основных групп[141][142]:
(II) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы). В этом случае ДНК всегда положительной полярности.
(III) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).
(IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы, флавивирусы).
(V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).
(VII) Вирусы, содержащие частично двуцепочечную, частично одноцепочечную ДНК[143][144] и имеющие в своём жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B)[145].
Дальнейшее деление производится на основе таких признаков как структура генома (наличие сегментов, кольцевая или линейная молекула), генетическое сходство с другими вирусами, наличие липидной оболочки, таксономическая принадлежность организма-хозяина и так далее.
Вирусы имеют различные механизмы, вызывающие болезнь у хозяина, и эти механизмы сильно зависят от вида. Такой механизм на клеточном уровне включает, прежде всего, лизис клеток, приводящий к их смерти. У многоклеточных организмов, при гибели большого числа клеток, начинает страдать организм в целом
Вирусная эпидемиология является частью медицинской науки, изучающей передачу и контроль вирусных инфекций среди людей. Передача вирусов может осуществляться вертикально, то есть от матери к ребёнку, или горизонтально, то есть от человека к человеку. Примерами вертикальной передачи могут служить вирус гепатита B и ВИЧ, при которых малыш рождается уже заражённым[154]. Другим, более редким, примером служит вирус ветрянки и опоясывающего лишая, который, хотя и вызывает относительно слабые инфекции среди взрослых людей, может оказаться смертельным для эмбрионов и новорождённых малышей[155].
Просвечивающая электронная микроскопия воссозданного вируса испанского гриппа
Численность коренного населения Америки была сильно уменьшена заразными заболеваниями, в частности, оспой, завезёнными в Америку европейскими колонизаторами. По некоторым оценкам, иноземными болезнями после прибытия Колумба в Америку, было убито около 70 % от всего коренного населения. Урон, нанесённый этими болезнями аборигенам, помог европейцам вытеснить и покорить их[165].
См. также: Онковирус
Вирусы могут вызывать рак у человека и других видов, хотя он возникает лишь у небольшой части инфицированных. Раковые вирусы относятся к различным семействам; они включают и РНК-, и ДНК-содержащие вирусы, поэтому единого типа «онковирус» не существует (устаревший термин, первоначально применявшийся для быстро трансформирующихся ретровирусов). Развитие рака определяется множеством факторов, такими как иммунитет хозяина[174] и его мутации[175]. К вирусам, способным вызывать рак у человека, относят некоторых представителей папилломавируса человека, вируса гепатита B и C, вируса Эпштейна — Барр, герпесвируса саркомы Капоши и человеческого T
См. также: Иммунная система
Два ротавируса: правый покрыт антителами, останавливающими его прикрепление к клеткам и заражение их
Первой защитной линией организма против вируса является врождённый иммунитет. Он включает клетки и другие механизмы, обеспечивающие неспецифическую защиту. Это значит, что клетки врождённого иммунитета распознают и реагируют на патогены общими способами, одинаково по отношению ко всем патогенам, но, в отличие от приобретённого иммунитета, врождённый иммунитет не даёт продолжительной и надёжной защиты хозяину[183].
Так как вирусы используют для размножения естественные метаболические пути клеток-хозяев, их сложно уничтожить без применения препаратов, токсичных для самих клеток-хозяев. Наиболее эффективными медицинскими мерами против вирусных инфекций являются вакцинации, создающие иммунитет к инфекции, и противовирусные препараты, избирательно ингибирующие репликацию вирусов.
См. также: Вакцинация
Вакцинация представляет собой дешёвый и эффективный способ предотвращения вирусных инфекций. Вакцины для предотвращения вирусных инфекций применялись ещё задолго до открытия самих вирусов. Их применение вызвано тяжёлым перенесением и смертностью от вирусных инфекций, таких как полиомиелит, корь, свинка и краснуха, поэтому лучше сделать прививку, чем переболеть[193]. С помощью вакцинации оспа была искоренена[194]. С помощью вакцин можно предотвратить более 30 вирусных инфекций у человека[195], а ещё больше вакцин используется для предотвращения вирусных заболеваний животных[196]. Вакцины могут включать ослабленные и убитые вирусы, а также вирусные белки (антигены)[197].
Основная статья: Противовирусные препараты
Гуанозин
Нуклеозидный аналог гуанозина — ацикловир
Противовирусные препараты часто представляют собой аналоги нуклеозидов. Они встраиваются в геном вируса в ходе репликации, и на этом жизненный цикл вируса останавливается, поскольку новосинтезированная ДНК неактивна. Это вызвано тем, что у аналогов отсутствуют гидроксильные группы, которые вместе с атомами фосфора соединяются и формируют жёсткий «остов» молекулы ДНК. Это называется цепной терминацией ДНК[202]. Примеры аналогов нуклеозидов — ацикловир, применяющийся против инфекций, вызванных простым вирусом герпеса, и ламивудин (против ВИЧ и вируса гепатита B). Ацикловир — один из старейших и наиболее часто назначаемых противовирусных препаратов[203]. Другие используемые противовирусные препараты имеют мишенью различные стадии жизненного цикла вирусов. ВИЧу, чтобы стать полностью заразным, необходим протеолитический фермент, известный как ВИЧ-1 протеаза. На основании этого разработан большой класс препаратов, называемых протеазными ингибиторами, инактивирующими этот фермент.
Вирусы поражают всю клеточную жизнь, но, несмотря на повсеместное распространение вирусов, каждый вид клеточных организмов имеет свой ряд поражающих вирусов, часто поражающих только этот вид[206]. Некоторые вирусы, называемые сателлитами, могут размножаться только в клетках, уже заражённых другим вирусом[52]. Вирусы являются важными патогенами домашнего скота. Вирусами вызываются такие заболевания, как ящур и «синий язык» (англ. bluetongue)[207]. Домашние животные, например, кошки, собаки и лошади, если их не вакцинировать, являются чувствительными к серьёзным вирусным болезням. Собачий парвовирус — это маленький ДНК-содержащий вирус, часто оказывается смертельным для щенков[208]. Как и все беспозвоночные, медоносная пчела чувствительна ко многим вирусным инфекциям[209]. Однако большинство вирусов безвредно сосуществуют со своими хозяевами, не подавая никаких признаков или симптомов болезни[6].
На долю беспозвоночных приходится около 80 % всех известных видов животных, поэтому нет ничего удивительного в том, что они скрывают в себе огромное множество вирусов различных типов. Наиболее изучены вирусы, поражающие насекомых, но даже здесь доступная по ним информация носит фрагментарный характер. Впрочем, в последнее время были описаны вирусные заболевания и у других беспозвоночных. Эти вирусы остаются малоизученными, и некоторые сообщения об открытии следует принимать с осторожностью, пока вирусная природа этих болезней не будет окончательно доказана. Кроме того, необходимо также проверить инфективность изолированных вирусов по отношению к неинфицированным хозяевам того же вида, у кого эти вирусы были обнаружены[210].
Другие вирусы, поражающие насекомых: семейство Baculoviridae, подсемейство Entomopoxvirinae семейства Poxviridae, род Densovirus семейства Parvoviridae, некоторые вирусы семейств Rhabdoviridae, Reoviridae, Picornaviridae[212].
Сюда перенаправляется запрос «Вирусы растений». На эту тему нужна отдельная статья.
Перцы, поражённые вирусом пятнистости
Существует много типов вирусов растений. Часто они вызывают снижение урожайности, принося большие убытки сельскому хозяйству, поэтому контроль таких вирусов очень важен с экономической точки зрения.[213] Вирусы растений часто распространяются от растения к растению организмами, известными как переносчики. Обычно ими выступают насекомые, но ими могут быть также грибы, черви-нематоды и одноклеточные организмы. Если контроль вируса растений признаётся экономически выгодным, например, в случае многолетних фруктовых деревьев, усилия направляются на устранение переносчиков или альтернативных хозяев, к примеру, сорняков[214]. Вирусы растений не могут поражать человека и других животных, так как они могут размножаться лишь в живых растительных клетках[215].
Для повышения достоверности результатов диагностики вирусологического статуса растений необходимо использовать как минимум два метода, причем, желательно, высокочувствительные — ИФА и ПЦР. Выявляемость вирусов повышается за счет использования гидроксипроизводного бензойной кислоты (ГПБК) в качестве эффективного антиоксиданта, учета биологических особенностей культур и условий окружающей среды[220].
Вирусы грибов называются миковирусами. В настоящий момент вирусы выделены у 73 видов из 57 родов, относящихся к 5 классам[221], но, предположительно, в безвредном состоянии вирусы существуют у большинства грибов. В общем эти вирусы представляют собой круглые частицы 30—45 нм диаметром, состоящие из множества субъединиц единственного белка, сложенных вокруг генома, представленного двуцепочечной РНК. Как правило, вирусы грибов относительно безвредны. Некоторые грибные штаммы могут поражаться многими вирусами, но большинство миковирусов тесно связаны со своим единственным хозяином, от которого передаются его потомкам. Классификацией вирусов грибов сейчас занимается специально созданный комитет в составе ICTV[221]. В данный момент он признаёт 3 семейства вирусов грибов, а наиболее изученные миковирусы относятся к семейству Totiviridae[222]
Если же вирус, попадая в гриб, проявляет свою вирулентность, то реакция гриба на это может быть различной: снижение или повышение вирулентности у патогенных видов, дегенерация мицелия и плодовых тел, изменение окраски, подавление спороношения. Некапсидированные вирусные РНК передаются через анастомозы независимо от митохондрий.
Вирусные заболевания могут наносить ущерб грибоводческим предприятиям, например, вызывать побурение плодовых тел шампиньона, изменение окраски у зимнего опёнка, что снижает их коммерческую ценность. Вирусы, вызывающие гиповирулентность грибов-патогенов, могут использоваться для борьбы с заболеваниями растений[223][224].
К вирусам протистов относят вирусы, поражающие одноклеточных эукариот, не включённых в царство животные, растения или грибы. Некоторые из известных на данный момент вирусов протистов[225]:
Название вируса (род)
Систематическое положение
(семейство)
Поражаемый протист
Dinornavirus Alvernaviridae Heterocapsa circularisquama
Endornavirus Endornaviridae Phytophthora
Labyrnavirus Labyrnaviridae Aurantiochytrium
Marnavirus Marnaviridae Heterosigma akashiwo
Marseillevirus Marseilleviridae Amoeba
Mimivirus Mimiviridae Acanthamoeba polyphaga
Coccolithovirus Phycodnaviridae Emiliania huxleyi
Prasinovirus Phycodnaviridae Micromonas pusilla
Prymnesiovirus Phycodnaviridae Chrysochromulina brevifilum
Raphidovirus Phycodnaviridae Heterosigma akashiwo
Cryspovirus Partitiviridae Cryptosporidium parvum
Hemivirus Pseudoviridae Volvox carteri
Pseudovirus Pseudoviridae Physarum polycephalum
Mimoreovirus Reoviridae Micromonas pusilla
Giardiavirus Totiviridae Giardia lamblia
Leishmaniavirus Totiviridae Leishmania
Trichomonasvirus Totiviridae Trichomonas vaginalis
Bacilladnavirus Не определено Chaetoceros salsugineum
Rhizosolenia setigera
Вирусы бактерий[править | править вики-текст]
Основная статья: Бактериофаги
Электронная микрофотография множества бактериофагов, прикрепившихся к бактериальной клеточной стенке
Бактериофаги представляют собой широко распространённую и разнообразную группу вирусов, достигающую большей численности в водных средах обитания — в океанах этих вирусов более чем в 10 раз больше, чем бактерий[227], достигая численности в 250 млн. вирусов на миллилитр морской воды[228]. Эти вирусы поражают специфичные для каждой группы бактерии, связываясь с клеточными рецепторами на поверхности клетки и затем проникая внутрь неё. В течение короткого промежутка времени (иногда считанных минут) бактериальная полимераза начинает транслировать вирусную мРНК в белки. Эти белки или входят в состав вирионов, собираемых внутри клетки, или являются вспомогательными белками, помогающими сборке новых вирионов, или вызывают лизис клетки. Вирусные ферменты вызывают разрушение клеточной мембраны, и, в случае фага Т4, всего лишь через 20 минут после проникновения в клетку на свет появляются свыше трёх сотен бактериофагов[229].
Бактериофаги могут выполнять и полезную для бактерий функцию, так, именно бактериофаг, заражающий дифтерийные палочки, кодирует ген их токсина, нужного этим бактериям и столь опасного для человека[233]:45.
Sulfolobus, поражённый ДНК-вирусом Sulfolobus tengchongensis spindle-shaped virus 1 (STSV-1).[234][235][236][237][238] В левой и нижней частях фотографии видны две вирусные частицы веретеновидной формы, отпочковывающиеся от клетки археи. Длина отрезка — 1 мкм
Некоторые вирусы размножаются внутри архей: это двуцепочечные ДНК-содержащие вирусы с необычной, подчас уникальной формой[9][239]. Наиболее детально они изучены у термофильных архей, в частности, порядков Sulfolobales и Thermoproteales[240]. Мерами защиты против этих вирусов могут быть РНК-интерференция от повторяющихся последовательностей ДНК в геномах архей, родственных генам вирусов[241][242].
Вирофаг Спутник
При изучении вирусных фабрик мимивируса было обнаружено, что на них собираются небольшие вирионы и другого вируса, который был назван спутником[243]. Спутник, по всей видимости, сам не способен заражать клетки амёб (которые служат хозяевами мимивируса) и размножаться в них, но может делать это совместно с мама- или мимивирусом, что классифицирует его как вирус-сателлит. Спутник стал первым известным вирусом-сателлитом, содержащим двухцепочечную ДНК и размножающимся в эукариотических клетках. Однако авторы работы предлагают рассматривать спутник не просто как сателлит, а как вирофаг (вирус вируса) по аналогии с бактериофагами (вирусами
Вирусы являются самой распространённой формой существования органической материи на планете по численности. Они играют важную роль в регуляции численности популяций некоторых видов живых организмов (например, вирус дикования с периодом в несколько лет сокращает численность песцов в несколько раз).
Иногда вирусы образуют с животными симбиоз[252][253]. Так, например, яд некоторых паразитических ос содержит структуры, называемые поли-ДНК-вирусами (Polydnavirus, PDV), имеющие вирусное происхождение.
Однако основная роль вирусов в биосфере связана с их деятельностью в водах океанов и морей.
Основная статья: Морские бактериофаги
Чайная ложка морской воды содержит около миллиона вирусов[254]. Они необходимы для регуляции пресноводных и морских экосистем[255]. Большая часть этих вирусов является бактериофагами, безвредными для растений и животных. Они поражают и разрушают бактерии в водном микробном сообществе, таким образом, участвуя в важном процессе круговорота углерода в морской среде. Органические молекулы, освободившиеся из бактериальных клеток благодаря вирусам, стимулируют рост новых бактерий и водорослей[256].
Значение морских вирусов очень велико. Регулируя процесс фотосинтеза, они играют второстепенную роль в сокращении количества углекислого газа в атмосфере приблизительно на 3 гигатонны углерода в год[259].
Вирусы являются важным естественным средством переноса генов между различными видами, что вызывает генетическое разнообразие и направляет эволюцию[11]. Считается, что вирусы сыграли центральную роль в ранней эволюции, ещё до расхождения бактерий, архей и эукариот, во времена последнего универсального общего предка жизни на Земле[261]. Вирусы и по сей день остаются одним из крупнейших живых хранилищ неисследованного генетического разнообразия на Земле[259].
В науках о жизни и медицине[править | править вики-текст]
Учёный, изучающий вирус гриппа H5N1
Вирусы имеют важное значение для исследований в молекулярной и клеточной биологии, так как они представляют собой простые системы, которые можно использовать для управления и изучения функционирования клеток[262]. Изучение и использование вирусов дало ценную информацию о различных аспектах клеточной биологии[263]. К примеру, вирусы применялись в генетических исследованиях, и они помогли нам прийти к пониманию ключевых механизмов молекулярной генетики, как то: репликация ДНК, транскрипция, процессинг РНК, трансляция, транспорт белков.
Современные направления в нанотехнологиях обещают принести значительно более разностороннее применение вирусам. С точки зрения материаловедов, вирусы можно рассматривать как органические наночастицы. Их поверхность несёт специальные приспособления для преодоления биологических барьеров клетки-хозяина. Точно определены форма и размер вирусов, а также количество и природа функциональных групп на их поверхности. По существу, вирусы часто используют в материаловедении как «подмости» для ковалентно связанных поверхностных модификаций. Одно из примечательных качеств вирусов — то, что они специально «подогнаны» направленной эволюцией под клетки, выступающие хозяевами. Мощные методы, разработанные биологами, легли в основу инженерных приёмов в наноматериалах, открыв тем самым широкую сферу применения вирусов, выходящую далеко за пределы биологии и медицины[266].
Многие вирусы могут быть получены de novo, то есть с нуля, а первый искусственный вирус был получен в 2002 году[37]. Несмотря на некоторые неправильные трактовки, при этом синтезируется не сам вирус как таковой, а его геномная ДНК (в случае ДНК-вирусов) или комплементарная копия ДНК его генома (в случае РНК-вирусов). У вирусов многих семейств искусственная ДНК или РНК (последняя получается путём обратной транскрипции синтетической комплементарной ДНК), будучи введённой в клетку, проявляет инфекционные свойства. Иными словами, они содержат всю необходимую информацию для образования новых вирусов. Эту технологию в настоящее время используют для разработки вакцин нового типа[269]. Возможность создавать искусственные вирусы имеет далеко идущие последствия, поскольку вирус не может вымереть, пока известна его геномная последовательность и имеются чувствительные к нему клетки. В наши дни полные геномные последовательности 2408 различных вирусов (в том числе оспы) находятся в публичном доступе в онлайн-базе данных, поддерживаемой Национальными институтами здравоохранения США[270
См. также: Биологическое оружие
Способность вирусов вызывать опустошительные эпидемии среди людей порождает беспокойство, что вирусы могут использоваться как биологическое оружие. Дополнительные опасения вызвало успешное воссоздание вредоносного вируса испанского гриппа в лаборатории[271]. Другим примером может служить вирус оспы. Он на всём протяжении истории опустошал множество стран вплоть до его окончательного искоренения. Официально образцы вируса оспы хранятся лишь в двух местах в мире — в двух лабораториях в России и США[272]. Опасения, что он может быть использован как оружие, не совсем беспочвенны[272]; вакцина против оспы иногда имеет тяжёлые побочные эффекты — в последние годы до официально объявленного искоренения вируса больше людей серьёзно заболели из-за вакцины, чем от вируса[273], поэтому вакцинация против оспы больше не практикуется повсеместно[274]. По этой причине большая часть современного населения Земли практически не имеет устойчивости к оспе[272].
В фильмах и других произведениях мир инфекционных заболеваний, в том числе вирусных, редко представляется достоверно. Исключая фильмы-биографии учёных и фильмы, повествующие о великих эпидемиях прошлого, в большинстве из них центральным событием является вспышка неизвестного болезнетворного агента, появление которого стало результатом акта биотерроризма, инцидента в лаборатории, или же он попал из космоса[275].
Вирусная инфекция заложена в основу следующих произведений (список неполный):
Кодзи Судзуки. «Звонок».
Кир Булычёв. «Лиловый шар».
Стивен Кинг. «Противостояние».
Майкл Крайтон. «Штамм „Андромеда“»[275].
Ричард Мэтисон. «Я — легенда».
Джек Лондон. «Алая чума».
Дэн Браун. «Инферно».
Александр Бобров. «Древнейший вирус».
Вспышка необычной вирусной инфекции лежит в основе сюжета следующих художественных фильмов и сериалов[275]:
«Часы Пандоры»[en]) (1996)
«28 дней спустя» (лат. 28 Days Later) (2003)
«28 недель спустя» (англ. 28 Weeks Later) (2007)
Штамм «Андромеда». Этот фильм, снятый по одноимённой повести Майкла Крайтона, можно назвать наиболее точным в научном плане[275].
«12 обезьян» (1995)
«Обитель зла» (2002) и его продолжения.
«Эпидемия» (1995)
«Лиловый шар» (1987)
«Носители» (2009)
«Я — Легенда» (2007)
«Заражение» (2011)
«Карантин» (2008)
«Карантин 2: Терминал» (2011)
«РеГенезис» (сериал, 2004—2008)
«Выжить после» (сериал 2013)
«Спираль» (сериал, 2014—2015)
«Штамм» (сериал, 2014—2015)
«Последний корабль» (сериал, 2014—2015)
«Закрытая школа» (сериал, 2011-2012)
«Инферно» (2016)