Ученые из Тюмени научились "возить" микрообъекты "грузовиками"
На модерации
Отложенный
В Научно-исследовательской лаборатории Фотоники и микрофлюидики Тюменского государственного университета разработан способ бесконтактного захвата и перемещения микро- и нано-частиц. Способ не имеет аналогов и позволяет манипулировать сотнями и тысячами частиц одновременно, перенося их в заданное место на подложке. При этом на них не оказывается разрушающего воздействия, что позволяет управлять как неживыми, так и биологическими объектами.
Как поясняют авторы разработки руководитель лаборатории Наталья Иванова и старший научный сотрудник Олег Тарасов, она возникла как решение одной из насущных задач микрофлюидики. Эта активно развиваемая сейчас области науки и техники нацелена на управление микрообъемами жидкости или микрочастицами. До недавнего времени всех устраивала последовательные манипуляции со штучными объектами, но взрывной рост применений микрофлюидики диктует необходимость параллельного управления движением сотен и тысяч объектов для принципиально повышения скорости работы.
Так художник представляет себе работу классического лазерного пинцета
Классический лазерный пинцет, разработки которого начались еще в 1970-х, позволяет с микронной точностью перемещать одновременно только одну или несколько частиц, и является дорогостоящей технологией. Однако не всегда нужна такая точность, не все образцы допускают воздействие лазера, часто требуется перемещать сразу большое число частиц. Ясно, что на каждую частицы лазер не нацелить.
Решение, найденное во фронтирной лаборатории ТюмГУ, является одновременно оригинальным и простым, что обеспечивает его универсальность и доступность. Частицы, которыми необходимо манипулировать, помещаются в слой жидкости, лежащий на подложке. Жидкостью является вода с небольшой добавкой спирта.
На подложку фокусируют пучок света, который взаимодействуя с жидкостью, приводит к изменению ее поверхностного натяжения. В результате жидкость собирается в пятно света в виде маленькой капли, в объеме которой существует интенсивное конвективное течение.
Серия фото, демонстрирующая процесс захвата и перемещения нескольких десятков частиц полиэтилена диаметром 150 мкм по поверхности стекла. Начальное и конечное положение пучка света показано пунктирными окружностью и эллипсом (вместе с собранными частицами). Стрелками указана траектория движения капли.
Смещение пучка света вдоль подложки вызывает перемещение капли, которая в свою очередь, захватывает частицы вдоль траектории движения (см. рисунок). Захваченные частицы удерживаются в капле за счет вихревого течения в ней и перемещаются вместе с каплей в нужное место подложки. Затем пучок света выключается, течение прекращается и частицы остаются в заданном месте подложки.
Указанным способом можно одновременно подхватить и переместить в требуемое место сотни и тысячи частиц. В дальнейшем их можно сортировать и располагать прецизионно уже оптическим пинцетом. Таким образом, данная капля это своеобразный микрофлюидный "грузовик", который привозит на микрофлюидную фабрику материал, а точное поштучное расположение деталей осуществляется уже другими инструментами.
Данное исследование поддержано сразу двумя престижными грантами (РФФИ и Европейского космического агентства) и выполняется параллельно двумя группами ведущих ученых в России и Великобритании. Российская группа под руководством федерального исследователя Натальи Ивановой проводит экспериментальное испытание предложенного способа, а группа профессора Виктора Старова из университета Лафборо (Loughborough University) выполняет теоретическое моделирование.
Комментарии