Наугеймская дискуссия, издание 1922 года, Филипп Эдуард Антон фон Ленард(3)
Эфир
В последнее время со стороны провозвестников принципа относительности были сделаны попытки упразднить заполняющую пространство среду — эфир, как ненужный и обременительный придаток. Попытки совершенно ничем не оправдываемые. Эфир не только был и продолжает быть вместе с материей главной составной частью в картине мира, созданной выдающимися естествоиспытателями. Он, кроме того, доказал свою ценность в качестве важного вспомогательного орудия исследования, о чем убедительно свидетельствует история естествознания, особенно в тех случаях, когда она может проследить первоначальное зарождение новых открытий. Вспомним основание и разработку современной оптики в ее главных частях Гюйгенсом и Френелем, или историю возникновения основных уравнений электродинамики у Максвелла, или же открытие электрических волн Герцем.
Определенно принимая допущение эфира в введении к своему знаменитому „Трактату о свете", Гюйгенс говорит в нем об „истинной философии", подразумевая под ней естествознание, „которая сводит причины всех явлений в природе к механическим основам", и добавляет: „Я считаю, что мы именно так и должны поступать, или же нам придется отказаться от всякой надежды когда-либо что-нибудь понять в физике" (си. у Оствальда, Klassiker, 20, 5—10).
Что эфир постоянно играл серьезную и важную роль в построениях Г. Герца, я могу подтвердить по собственным воспоминаниям, относящимся в последним годам его жизни. Несомненно, что и в осуществлении или открытии электрических волн ему также помог эфир, причем Герцу не было для этого необходимо предварительно полностью разрезать оба тома Максвелла. Достаточно было принять, что действия индукции распространяются в эфире с конечной скоростью, и на этой основе построить опыты с быстрыми колебаниями.
То обстоятельство, что другие ученые считают возможным обойтись без эфира как для построения общей картины мира, так и при своих исследованиях, ничего не говорит против эфира, и напротив, будет совершенно понятно, если мы учтем два рода картин неодушевленной природы, которые до сих пор создавала человеческая мысль. Я позволю себе повторить здесь однажды уже сделанное мною разъяснение сказанного („Ueber Aether und Materie", Heidelb. (С. Winter), 1911, S. 5):
“Картина природы, даваемая естествоиспытателем, может быть двоякого рода. И в том и в другом случае она будет иметь количественный характер. Но она может,—и это будет первый способ, — всецело заключаться в одном установлении количественных отношений между наблюдаемыми величинами. В этом случае она может быть вполне выражена в виде математических формул, большей частью дифференциальных уравнений. Этот путь избрали Кирхгоф п Гельмгольц. Кирхгоф назвал его математическим описанием природы. Научное использование данных такой картины природы и вместе с тем проверка их правильности заключается в построении отчасти вытекающих из них выводов. Выводы эти суть математические выводы из уравнений, и только. Но можно не останавливаться на этом, и тогда мы имеем картину мнра второго рода. В ней мы руководствуемся тем убеждением, без которою в наших естественно-научных исследованиях, несомненно, никогда ие достигли бы успехов. А именно, мы исходим из того, что все процессы в природе являются только процессами движения, т. е. состоят в пространственных перемещениях раз навсегда данной материи. В этом случае мы в каждом явлении природы должны установить его механизм, и те уравнения, которые нам давали картину мира первого рода, должны здесь быть уравнениями механики, должны соответствовать совершенно определенным механизмам. Эти механизмы н будут для нас образами, в которых мы мыслим себе процессы природы. Образами лее вещей в нашем представлении будут механические, динамические модели. Механические модели и уравнения, т. е. оба способа изображения мира, если только они правильны, будут совершенно равноценны друг другу в результатах, к которым они приводят”.
Из сказанного видно, что картину мира второго рода я ставлю выше, чем первого, так как она в завершенном виде представляет по сравнению с картиной первого рода ее дальнейшее развитие. Но в начале исследования она, наоборот, нередко является лишь введением к математической картине. В виду этого, естественно, иногда бывает, что мы имеем надлежащую картину первого рода там, где еще не в состоянии дать законченную картину второго рода, и в этих случаях первой должно быть отдано преимущество перед последней.
Сказанным разъясняется вопрос о правильности нашей идеи эфира, о том, в праве ли мы объявить его “уже ставшей нам ненужной точкой зрения”. При методе описания первого рода вполне можно обойтись без эфира, поскольку мы в этом случае хотим ограничиться единственно выражением в уравнениях отношений между доступными непосредственному наблюдению величинами. Здесь нам дана возможность такого ограничения, но она исключена в картине второго рода, так как для того, чгобы она была понятна, существенным ее условием является принятие “скрытых соучаствующих факторов” (эфир, атомы материи, электроны).
Само собою разумеется, что часто имеет место соединение обоих методов построения картины мира, и лишь в редких случаях до конца проводится возможное лишь при первой из них полное устранение „скрытых соучаствующих факторов". Но — явление, характерное для нашего времени, — теперь по преимуществу принято избегать именно эфира, как чего-то в особенности подозрительного, тогда как электроны признаются вполне допустимыми. Напротив, некоторое время раньше столь же необходимым считалось отказываться от признания электричества, и ограничивать рассмотрение только доступными прямому наблюдению „электрическими силами". В подобных случаях отказа от уже оправдавших себя гипотез дело идет только о некотором добровольном пуританизме своего рода в угоду какому-либо научному направлению, составляющему в данный момент центр внимания. В этом не было бы особой беды, если бы это часто не влекло за собой игнорирования вещей, весьма важных для успехов исследования. Так, например, высказанное когда-то Максвеллом предостережение против принятия электричества, несомненно, затормозило открытие электронов.
В этом можно видеть сильпую и слабую стороны обоих способов построения картины мира. Указанная возможность ограничиться в картине первого рода непосредственно наблюдаемыми величинами, избегая, таким образом, менее достоверного и более трудного, составляет его силу. Но в этом же и его слабая сторона, так как для здравомыслящего и обладающего современными познаниями естествоиспытателя не представляет на малейшего сомнения, что подавляющее большинство вещей, даже в чисто материальной природе, остаются скрытыми для наших жалких пяти или шести чувств, и что, следовательно, ограничение, совершенно устраняющее эти скрытые соучаствующие факторы, является ограничением поистине, ужасающего объема. Такое ограничение естественнонаучной картины мира только непосредственно доступным наблюдению может быть названо человеческим, т.е. приноровленным к человеческой природе, поскольку оно заранее все строит на наших чувствах. Но оно противоречит также и человеческой природе, так как не считается со способностью человеческого духа и с присущим ему стремлением воссоздавать в своем воображении соответственные образы скрытых от нас соучаствующих факторов. Практически оно облегчает описание природы, так как устраняет все, что не может быть непосредственно контролируемо; но оно и затрудняет его, так как оставляет в нем зияющие пустоты, объем которых подавляюще велик, как это только что было указано, и через Которые должен быть переброшен мост при помощи соответствующих математических построений. В виду всего этого, претензии некоторых из сторонников первого способа построения картины природы, так сказать, упразднить эфир производят впечатление основанного на недоразумении самомнения. Или ими здесь объявляется “ставшей излишней точкой зрения” такое допущение, относительно которого и так можно было заранее сказать, что без него при известных условиях можно обойтись. Или же отвергается существование пропасти только потому, что оказалось возможным через нее перепрыгнуть.
Таким прыжком через пропасть могло казаться в свое время открытие световых квантов. На одной стороне были световые волны, на другой — нового рода световые кванты, а между ними оставалась незаполненной пропасть,|чего, конечно, никто не мог поставить в вину смелому автору прыжка. Но уже слишком далеко шло по пути отрицания сделанное в связи с этим открытием заявление: „Отныне гипотеза эфира должна, конечно, рассматриваться как точка зрения, теперь ставшая уже излишней". (Съезд естествоиспытателей в Зальцбурге 21-го сентября 1909 г., Verh. d. D. Phys. Ges., S. 482. Phys. Zeitschr., Bd. 10, S. 817, 1909). Такое заявление не мог.ю внушить бодрости для дальнейших попыток перебросить мост через указанную пропасть, что, однако, было желательно в интересах научного исследования. Тем не менее, я попытался это сделать и пришел к выводу, что в световых квантах мы имеем то же самое явление, которое уже задолго до того было отмечено под видом когерентных верениц световых волн, но только дополненное новым существенным прздположением о концентрации энергии в луче определенного направления. Последнее я объяснял, принимая, как это, впрочем, и вообще представлялось вероятным, что в каждой из испускаемых колеблющимся отдельным электроном световых волн заключается только одно кольцо электрических силовых линий, мыслимое в виде отдельного эфирного вихревого кольца. (См. „Ueber Aether und Materie", 1911, S. 19 u. ff. и Untersuchung iiber Phnsphorescenz, Heidelb. Akad., 1913, A 19, S. 34, сноска 61). Как я установил позже, уже и Г. А. Лоренц объяснял световые кванты, как когерентные вереницы волн (Physik Zeitschrift. Bd. 11, S. 353, 1910). Возможность такого объяснения доказывает, — и это отнюдь не безразлично для общей картины естествоиспытателя, — что световые кванты не произвели никакого переворота в теории света, в особенности же, что они ровно ничего не говорят ни за, ни против „гипотезы эфира". Напротив, теория световых квантов по существу касается особого, бывшего до того неизвестным, свойства испускающих свет атомов.заключающегося в том, что они приспособлены к испусканию когерентных верениц волн с определенным содержанием энергии, зависящим от периода колебания.
Взгляд на световые кванты, как на когерентные вереницы волн, длина коих может быть таким образом измерена в каждом отдельном случае при помощи построенных на оптической интерференции опытов, был с очевидностью подтвержден новыми опытами г. В. Вина, в которых была измерена продолжительность испускания световых квантов (Annalen d. Physik, Bd. 60, S. 597, 1919).
Весьма замечательно, что, как выяснилось при этом в результате непосредственного наблюдения, энергия светового кванта распределена неравномерно по длине ряда волн, но что мы имеем здесь постепенное затухание испускающего свет атома (согласно показательной функции, как при акустическом ряде волн от звука колокола). Таким образом, мы только тогда можем определить длину всей вереницы волн, когда установим, к какой стадии затухания должен быть отнесен его конец. Если мы его фиксируем, примерно, при 1/7 (точнее, при 1/е2 начальной интенсивности), то, согласно измерениям г. В. Вина, длина светового кванта будет около 10 m. Притом длина эта, что опять-таки весьма замечательно, будет одинакова, согласно произведенным до сих пор измерениям, для световых квантов всех длин волн, несмотря на то, что содержание энергии световых квантов различно при различной длине волн. Это могло бы означать (если позволительно уже теперь делать обобщения на основе этих новых опытов), что энергия каждой отдельной волны какого-либо светового кванта будет одинакова при одинаковом расстоянии от места излучения данного ряда волн. Тогда, по нашему представлению, различное количество энергии волн, неодинаково далеко отстоящих от начала, выражалось бы в различной ширине кольца замкнутых в кольцо электрических силовых линий волны, отсчитанной перпендикулярно к лучу.
Любопытно при этом отметить следующее. С особой энергией настаивает на отрицании эфира именно обобщенный принцип относительности, но зато он приходит к “пространственным координатам”, составляющим его существенную принадлежность. Последние же, по приписываемой им изменчивости их свойств, вполне могут быть приняты за нечто определяющее состояния пространства. В результате получается впечатление, что тот же самый изгнанный эфир вновь дал о себе знать под измененным именем "пространства".
Понятие абсолютного движения также могло бы быть наилучше определено с помощью эфира, и именно, как относительного движения по отношению к эфиру. Тогда содержание принципа относительности могло бы быть выражено так: возможно установить только относительное движение материи по отношению к материи же, а не равномерное относительное движение материи по отношению к эфиру (первоначальный или специальный принцип относительности). Что касается неравномерного относительного движения материи к эфиру, то по общему правилу оно может быть установлено (на основании связанных с ним, как мы видели, сил инерции или же при помощи отдельных электрических зарядов как основных частей материи, благодаря возбуждаемым ими в эфире волнам"). Только, в случае когда мы имеем в.качестве действующей силы тяготение, не может быть установлено также и неравномерное относительное движение материи к эфиру (так как силы инерции, служащие его признаком, в данном случае не имеют места; это будет ограниченный обобщенный принцип относительности, или, лучше, принцип тяготения).
Но есть еще и особая причина, сыгравшая роль в столь часто высказывавшемся за последнее десятилетие отрицательном отношении к этой заполняющей пространство среде. Это — очевидное несовершенство наших теперешних представлений об эфире. Законченное и в пределах доказуемого свободное от противоречий представление об эфире, пригодное для наших исследований, мы имели бы только в том случае, если бы внутренний механизм его частей был нами настолько же выяснен, насколько у лее выяснен внутренний механизм материи, со времени развития кинетической теории газов. В этом случаемаксвеллевские уравнения, представляющие в известном смысле квинтэссенцию физики эфира (поскольку они охватывают свет, электричество и магнетизм), так же могли бы быть выведены из теории механизма эфира, как оказалось возможным вывести уравнение состояния материи из указанной кинетической теории. Но до сих пор в этом отношении, как это неоднократно особо подчеркивалось за последние годы, мы имели с максвеллевскими уравнениями только отрицательные результаты.
Надо считать доказанным, что эти уравнения не могут быть приведены к уравнениям движения эфира, непрерывно заполняющего пространство. Но и уравнение состояния материи также не может быть выведено из движения непрерывно распространенных масс, но только из движения раздельно распределенных атомов. Подобно этим уравнениям, также и максвелловские уравнения должны быть рассматриваемы лишь как статистические уравнения, применимые только при взаимодействии весьма большого количества электронов, но теряющие свою силу, поскольку речь идет об отдельных элементарных процессах. (Ср. „Ueber Aether u. Materie", 1911, S. 34). О прерывном зернистом строении эфира мы будем говорить в следующей главе.
Это привело, невидимому, к широко распространенному отрицанию возможности положительных результатов. Такое положение вещей сходно с тем, что наблюдалось до 1877-го года, когда, вследствие многочисленных неудачных попыток обратить воздух в жидкое состояние при помощи одного только высокого давления, создалось убеждение, что существуют “перманентные” или “несжижаемые” газы в противоположность другим, допускающим сжижение. Теперь мы уж давно знаем, что это было лишь временным заблуждением, которое могло так прочно укорениться только благодаря ограниченности суждений, ибо уже задолго до того, как факт обращения кислорода в жидкое состояние раскрыл всем глаза на действительное положение этого вопроса, не было недостатка в материале для правильного его понимания, которое мы связываем с понятием “критической температуры”. Время покажет, не повторится ли та же история в развитии проблемы эфира. Я лично не думаю, чтобы надолго можно было отказаться от механики эфира. Зто было бы равносильно отказу в естественно-научных исследованиях от последовательного применения геометрических и динамических воззрений, имеющего не случайное, но решающее значение, т.-е. отказу от того вспомогательного орудия, которому до сих пор естествознание было обязано самыми крупными, можно сказать, всеми своими достижениями. В этом можно убедиться, если проследить там, где это возможно, зарождение открытий в уме их авторов или хотя бы хронологический порядок их опубликования. Наряду с указанным методом чисто абстрактное, математическое исследование, не связанное с представлениями трехмерного пространства и дающее картину мира первого рода, почти всегда играет роль только последующей формулировки, задача которой — защитить уже найденное зерно открытия, и которая вместе с тем, разумеется, одна только и сообщает ему характер бесспорности и придает ему его всеобщее значение.
Так было в известной мере и с первыми успехами новых исследований тяготения, выходящих за пределы закона обратной пропорциональности квадрату расстояния. Идея Гербера о распространении тяготения с конечной скоростью, и именно со скоростью света, встреченная в свое время самыми неблагоприятными отзывами, опиралась в основе только на представление об эфире, и, тем не менее, она дала возможность, если не доказать, то установить, согласно с данными опыта, связь между движениями Меркурия и конечной скоростью распространения тяготения еще раньше, чем г. Эйнштейн с помощъю чисто математического метода исследования мог с большей, разумеется, убедительностью установить указанную связь.
Тяготение
Отправным пунктом для электромагнитной модели, объясняющей тяготение, к которой я пришел, исходя из допущения распространения действия тяготения со скоростью света, послужил ранее опубликованный мной “Очерк кинетики проницаемого эфира” (“Ueber Aether und Materie”, 1 Aufl. 1910, 2 Aufl. 1911, S. 30 и 50.).
Воззрения, высказанные в этой работе, и сейчас представляются мне заслуживающими дальнейшего развития. Они, мне кажется, вполне допускают математическую обработку, без которой нельзя, вообще, обойтись. Я хотел бы их здесь коснуться, хотя модель для объяснения тяготения сохраняет силу и независимо от них.
Тяготение при этом представляется непосредственно, как магнитная сила, действующая между динамидами, из которых состоят атомы материи.
(Движущиеся вокруг положительных квантов электроны (P. L e n a r d. Ann. der Physik, 12, 735 и ff., 1905), позже получившие также название магнетонов (ср. также “Quafltitatives uber Katodenstrahlen”, 1918, Spez. Teil III F, и дальше выноску 24-а). О том, что тяготение в нашей картине мира может и не быть электрической силой, — допущение, обыкновенно приписываемое Г. А. Лоренцу, но, как мне кажется, имеющееся уже у В. Вебера (Ges. Werke, IV, S. 479) — я уже упоминал (“Ueber Aether u. Materie> 1911, S. 39 в сноске). Препятствием к при знанию тяготения магнитной смой до опубликования работы Гербера казалась мне предполагавшаяся тогда скорость
распространения тяготения, значительно превышавшая скорость света.)
В названной кинетике я отказался от представления о непрерывном или непрерывно движущемся эфире, представления, от которого отказались в виду достаточно выясненной его неудовлетворительности, и пришел к картине “пространственно-прерывного подвижного проницаемогоэфира”.
В. Нернст также пользуется представлением об эфире с “атомистической структурой” (впервые, насколько я мог видеть, в 4-м издании своей “Теоретической химии”, 1903, стр. 391); позднее, он пытается при помощи этого представления разрешить такие вопросы, как вопрос о сохранении внутренней атомной энергии (энергии дянамид) или о регенерировании радиоактивных элементов (см. W. Kerns t, Verh. d. Phys. Ges., 18, особенно S. 85—88, 1916). Попытки разрешения этих вопросов г. Нернстом построены, конечно, совершенно иначе, чем это было сделано мною в моих, насколько можно судить, более ранних попытках (см. “Ueber Aether u. Materie”, 1911, S. 44, или Heidelberg. Akad. 1910, A 17, S. &); все же, думаю, я могу с удовольствием констатировать общность исходной точки зрения.
Весьма ясное, как мне кажется, указание на структуру эфира я вывел недавно на основании наблюдений над катодными лучами (см. “Quantitative s iiber Katodenstrahlen, Heid., 1918, S. 183, прим. 517).
Части этого “проницаемого эфира” движутся со скоростью света и свободно проникают друг через друга (или же они столь чрезмерно малы, что их столкновения заметного влияния не оказывают). Кроме того, эти частицы характеризуются втремлением к равномерному пространственному распределению и движутся прямолинейно. В пространстве, свободном от действия сил, движение всех частей эфира совершается прямолинейно и во всех направлениях. В этом эфире имеются раздельные (не гидродинамические гельмгольцевские) вихревые нити, но одной нити, идущей от каждого имеющегося электрона к соответствующему положительному заряду; кроме того, имеются еще и замкнутые выхревые кольца, оторвавшиеся, от указанных нитей. Эти вихревые нити эфира представляют собой электрические силы; оторванные от них замкнутые части составляют электрические волны. Всякое поступательное движение вихревой нити вызывает поперечное течение эфира; возникающие таким образом потоки эфира вдоль известных направлений магнитных силовых линий образуют магнитные силы. При этом, из уже упомянутого основного допущения “проницаемости эфира” следует, что эти потоки не увлекают всего эфира в силовом поле, но захватывают только некоторые из разбросанных его частей в числе, соответствующем силе магнитного поля; остальная же часть эфира не участвует в движении (или же она может принадлежать и другим магнитным полям). Части эфира, входящие в состав потока, движущегося в направлении, перпендикулярном к вызвавшему этот поток движению электричества, и создают магнитные силовые действия, как, напр., действие друг на друга двух замкнутых круговых электрических токов, действие, выражающееся сначала в ориентировке двух круговых токов: установке их параллельно друг к другу, а затем в непосредственном взаимном притяжении.
Вся материя состоит из динамид, представляющих “обой замкнутые круговые токи и девствующих друг на друга, как таковые: с одной стороны, они вызывают соответствующие поперечные течения эфира (магнитное иоле замкнутого тока), с другой—сами, в свою очередь, захватываются поперечными течениями других динамид в только что указанном смысле. Отсюда следует, что мы должны принять силу притяжения за общее свойство всей материи, как только будет выяснено (чем мы непосредственно дальше и займемся), в силу чего противоположные действия противоположно расположенных динамид не оказывают влияния на окончательный результат.
При таном построении пропорциональность тяготения массе должна явиться результатом пропорционального массе числа динамид.
Первоначальное мое допущение о пропорциональности между числом динамид и массой (не порядковым числом) атома недавно снова нашло свое применение в моделях атома г. Э. Герке (см. Verhandl. d. D. Phys. Ges., 21 Jahrg., S. 779,1919 Heidelb. Akad. 1919, A 14).
Закон квадрата расстояния вытекает из чисто геометрических соображений, в виду малой величины доступных измерению скоплений динамид и их беспорядочной ориентировки в пределах данного скопления. Скорость же распространения тяготения, равная скорости света, обусловлена таковой же •скоростью частиц эфира в указанных выше потоках.
Такие действия, как перемещение перигелия Меркурия, найдут себе объяснение, если, кроме допущения распространения тяготения со скоростью света, принять еще, что динамиды движущегося тела (Меркурия) претерпевают изменения, зависящие от относительной скорости его по отношению к эфиру (скорость вращения). Такое допущение соответствует принципу относительности (простому и общему с указанными ограничениями) и, следовательно, уже в силу этого должно содержаться в динамике эфира, поскольку последняя представлена полно и правильно.
Что касается нашего допущения об отсутствии влияния взаимных действий противоположно расположенных динамид, при каковом условии только и может получиться отличное от нуля результирующее действие беспорядочных скоплений динамид, то оно вытекает из принятого вами положения о том, что течения эфира не являются непрерывными ни пространственно, ни во времени, и что части эфира взаимно проницаемы, вследствие чего каждая отдельная динамида может действовать, как будто она была одна. В самом деле, тогда течения, обусловленные двумя смежными, противоположно направленными динамидами, будут действовать на третью удаленную динамиду не в одно и то же время, и, следовательно, отдельные их действия, не влияя друг на друга, будут складываться и давать некоторую среднюю силу, вычисляемую за известный промежуток времени. При этом будет иметь место сложение абсолютных величин отдельных действий, а не геометрическое сложение. В этом рассуждении предполагается, что динамиды обладают способностью с достаточной скоростью следовать за отдельными частицами эфира, меняя положение плоскости своей орбиты, и тогда эти частицы при изменившемся положении (вследствие поворота плоскости орбиты) действуют друг на друга в смысле взаимного притяжения.
(Механизм, изложенный здесь сжато, надо себе представлять следующим образом: два произвольно расположенных электрических круговых тока прежде всего поворачиваются так, чтобы стать параллельно друг другу, и затем притягиваются. Так как действия не непрерывны во времени, то указанный здесь процесс для одной пары динамид, I и III, успеет закончиться прежде, чем начнется взаимодействие II и III, а так как в результате каждого взаимодействия получается притяжение, то, в конце концов, и суммарное действие подучается в виде притяжения. - Прим. Ред.)
Такую быстроту смены последовательных ориентаций необходимо допустить для динамид всех атомов вообще, так как иначе не может быть объяснена констатируемая на опыте пропорциональность тяготения массе; вместе с тем, нет оснований для каких-либо возражений против этого допущения. Эта последовательная смена ориентировки динамид может происходить лишь с очень малыми амплитудами; большие амплитуды противоречили бы как чрезвычайно малой силе тяготения всех масс, не обладающих огромной величиной, так и тому факту, что обыкновенные упорядоченные сильные магнитные поля не обнаруживают никакой заметной силы тяготения, но. лишь силу, соответствующую магнитной проницаемости и называемую “магнитной” силой. Последняя же создается такими замкнутыми круговыми токами в данном веществе, которые при достаточном промежутке времени могут с большой амплитудой следовать за ориентирующим действием поля. Магнитные силы отдельных динамид, результатом которых мы считаем силу тяготения, не могут быть, согласно сказанному, обнаружены при помощи магнитных стрелок, кусков железа или замкнутых цепей, присоединенных к гальванометру. Все эти приборы не обладают способностью с достаточной скоростью или с достаточной чувствительностью реагировать на действие отдельных частей эфира, приводимых в движение отдельными динамидами; они реагируют только. на более длительные действия очень большого числа в одинаковом направлении кружащихся электронов.
Отсюда также видно, что максвеллевские уравнения могут вовсе и не быть приложимы к тяготению, хотя мы и рассматриваем его, как магнитную силу, ибо эти уравнения исчерпывающе изображают только такие явления, при которых действуют бесчисленные количества одинаково направленных электронов (см. “Ueber Aether und Materie”, 1911 S. 34).
Существенным в только что набросанной картине электромагнитной природы тяготения является только следующее: 1) материя состоит из кружащихся электронов (динамид); 2) каждые две динамиды действуют друг на друга, как замкнутые круговые токи; 3) плоскости этих замкнутых круговых токов могут слегка поворачиваться; 4) магпитное поле этих элементарных замкнутых токов не заполняет пространства непрерывно, но перемежается во времени и пространстве. Для наглядного изображения этих существенных черт нашей картины может служить следующая модель. Притягивающее тело представлено круговым замкнутым током на раме около 60 см. диаметром, имеющей обмотку в 400, примерно, оборотов толстой проволоки, установленной вертикально. Притягиваемое тело — такая же рама с замкнутым током, но более легкая, с обмоткой из более тонкой проволоки, и притом подвешенная так, что она может легко двигаться. Подвешена она таким образом, чтобы возможны были два рода движения: 1) вращение вокруг какого-либо диаметра кругового тока, как оси, и 2) изменение расстояния, отделяющего подвижной проводник от неподвижного. Начальное положение обоих круговых токов в отношении друг друга может быть избрано произвольно, расстояние между ними равно нескольким метрам. Если мы устраним особым приспособлением возможность вращения вокруг диаметра подвешенного проводника, то, смотря по направлению токов в обоих проводниках, мы будем иметь только или отталкивание или притяжение их. Если мы станем менять направление тока в неподвижно стоящем проводнике через равные (не очень большие) промежутки времени, например, через каждые 5 секунд, то в конечном результате (при постоянном прохождении тока в подвижном проводнике) не получится ни приближения ни удаления обоих проводников друг от друга. Но когда подвешенному проводнику будет дана возможность движений обоего рода, то при каждой перемене тока в неподвижном круге подвижной проводник будет делать небольшой поворот вокруг диаметра так, чтобы стать параллельно неподвижному. Вследствие этого действие притяжения получит перевес, и подвешенный проводник все более будет приближаться к неподвижному, пока они не столкнутся. Перемена направления тока в неподвижном проводнике изображает прерывность динамидных полей и возможность любого расположения по отношению друг к другу обеих динамид, изображенных замкнутыми токами.
Если этот только что набросанный с точки зрения явлений тяготения эскиз механизма эфира (более подробно развитый в указанной выше работе), и не достаточен” т. е. если он пока еще не может быть облечен в форму уравнений, которые дали бы количественные соотношения для тех качественных признаков, которые мы уже приписали механизму, и притом так, чтобы максвелловские уравнения были заключены и них, как частный случаи, то все же, думается мне, нельзя отказаться от дальнейшей разработки этого или сходного механизма эфира. Ибо, отказываясь от механизма эфира, надо было бы в принципе отказаться от всякой картины мира второго рода, а, следовательно, и вообще от механического истолкования природы. “Я не думаю, что это случится, даже в том случае, если для уяснения механики эфира придется ввести наряду с эфиром или за ним и его частями еще другой эфир”.
Я полагаю, что это уже и сейчас должно быть доступна искусным и находящимся во всеоружии своей науки математикам. Если выведенные таким способом уравнения и не были бы еще уравнениями механики, то это все же не уменьшило бы их ценности. Следует напомнить, что и максвелловские уравнения, ценность которых известна, также развились из представлений о механизме эфира, и что они не являются уравнениями механики.
Такой, как я хотел бы его назвать, “мета-эфир”, или первоначальный эфир был бы той заполняющей все пространство средой, которая заставляет частицы эфира удовлетворять условиям, установленным нами для их движения.
Думалось бы, что такого рода положительные идеи в смысле плодотворности предпочтительнее постоянных отрицательных утверждений о ненужности и невыполним мооти теории эфира. Природа неустанно преподносит естествоиспытателям всяческие сюрпризы, и поэтому правильнее было бы продолжать считать путь исследования еще открытым, чем отказываться от него без принудительных к тому оснований. Ведь еще не так давно считалось необходимым но возможности избегать оперирования с атомами материи, как слишком “гипотетическими”.
Бунзен совершенно избегая говорить об атомах, Гельмгольц и особенно Кирхгоф довольно близко стояли к нему в этом отношении. Б у н з е н избегал также говорить об атомных весах и для характеристики химических соединений пользовался исключительно эквивалентными формулами. , см. также сходные воззрения S. Wiechert'a, Astron. Nachr. Bd. 211, Nr. 3054, S. 275,1920. Там же указано на предстоящее опубликование в Annalert d. Physik дальнейшего исследования того же автора о тяготении (во время издания настоящей работы напечатано в 63 томе, стр. 301).
И разве, несмотря на это, не исследуют теперь с величайшим успехом не только движения атомов во всех агрегатных состояниях, но и движения внутренних составных частей атомов? Между тем, самое существование последних незадолго до этого было далеко не общепризнанным. В самом деде, ранние воззрения В. Вебера о “положительных и отрицательных электрических частицах”, как составных частях атома, явным образом до такой степени показались его современникам чуждыми и безнадежными, что впоследствии эти воззрения пришлось заново раскапывать, когда частицы вновь дали знать о своем существовании в явлениях, которые не были предвидены.
Приложение
Наугеймская дискуссия о принципе относительности.
В то время как подготовливалось настоящее новое издание, на наугеймском съезде естествоиспытателей 25-го сентября этого года состоялась дискуссия о принципе относительности. При этом г. Эйнштейн сделал попытку рассмотреть указанные в настоящей книге трудности теории и ответить на вытекающие из них вопросы. Поводом для этого послужили в особенности доклады г. г. Вейля и Ми об электричестве и тяготении.
Общее впечатление от дискуссии, в которой, кроме названных ученых, приняли участие и другие представители математики и физики, подтвердило, по моему мнению, что действительно в указанных в настоящей статье пунктах теория наталкивается на трудности и сомнения, удовлетворительное разрешение которых не так легко может быть достигнуто, и, следовательно, постановка этих вопросов была вполне законна. Казалось вполне ясным, что преодоление препятствий, мешающих дальнейшей разработке указанных вопросов, привело бы к дальнейшему развитию теории и устранению ее нынешних слабых сторон. К такому же развитию теории стремился в своих работах в особенности г. Ми, не без частичного при этом уклонения от первоначального пути г. Эйнштейна
Препятствием к исчерпывающему рассмотрению выдвинутых мною затруднений и вопросов служит, как это еще раз обнаружилось во время дискуссии, та пропасть, которая обычно разделяет сторонников двух различных методов построения картины природы, указанных на стр. 31. Приверженцы первого метода, к числу которых в особенности надо отнести г. Эйнштейна, большей частью, но видимому, не склонны стать на точку зрения второго метода, хотя бы ради того, чтобы наилучше видеть все те затруднения и вопросы, которые именно с этой точки зрения отчетливее могут быть распознаны. Но, несомненно, что на какой бы метод изображения, первого или второго рода, ни опиралась теория, безупречной она может быть признана только тогда, когда нельзя выставить против нее возражений ни с той ни с другой из указанных точек зрения. Ибо развитие естествознания показало, что обе точки зрения вполне законны, и до сих пор все испытанные теории представлялись свободными от противоречий с точки зрения обоих методов. Кто провозглашает и отстаивает „упразднение эфира", тот, значит, отказывается от построения картины природы по методу второго рода (ср. стр. 31). Но тогда для него закрыт путь исследования проблем с точки зрения этого метода, и потому от него не приходится ожидать ни разрешения возникших трудностей, ни связанного с последним прогресса. Было бы бесполезно пытаться подвергнуть указанные вопросы дальнейшему рассмотрению, и вполне кстати нау гейм екая дискуссия в этом пункте оборвалась сама собой. Ибо здесь нас заставляет быть скромными сознание тех огромных требований, которые в этом пункте развития предъявляются к умственным силам естествоиспытателя. Не часто, как кажется, встречается сочетание крупного математического дарования, позволяющего легко овладеть картиной мира первого рода, со способностью к тому внутреннему динамическому и физическому созерцанию, которое ищет построения мира по второму способу, и обратно. Едва ли можно устранить при этом подозрение в умышленном характере такой односторонности ради пущей сенсации, которую она вызывает. Это факт, достойный сожаления. Но он тем не менее имеет место, и было бы нездоровым и в качестве такового, конечно, еще более прискорбным признаком, если бы он не встречал противодействия. „Релятивисты" должны были бы спокойно отнестись к такому противодействию, ими же самими вызываемому.
„Упразднение эфира" вновь было декларировано в Наугейме на торжественном заседании открытия конгресса (раньше это было сделано в Зальцбурге самим г. Эйнштейном, см. цитату в примеч. 17 на стр. 34). Никто при этом не рассмеялся. Я не знаю, впрочем, не встретили ли бы таким же образом провозглашение упразднения воздуха.
Уже по одному этому можно судить, насколько нецелесообразно преподносить широкой публике одностороннее изложение принципа относительности в популярных брошюрах и докладах.
Что касается отдельных вопросов, то дискуссия дала приблизительно следующее.
[Вопрос о понятии пространства четырех измерений был сразу поставлен вне обсуждения. Пред лицом столь многочисленныхматематиков (часто придающих математике, этому вспомогательному средству, такое же значение, как физическому смыслу явлений) было бы бесцельно настаивать на той точке зрения в этом вопросе, которая мне, как естествоиспытателю (не закрывающему, однако, глаз и на вопросы, лежащие вне материального мира), представляется единственно приемлемой (ср. примеч. 7 на стр. 17). Можно ведь считать делом вкуса, в каких пределах кто-либо готов пожертвовать свободой своего мышления в угоду „признанию относительносги времени".]
Два вопроса были обсуждены особо друг от друга, но существенная их связь настолько была выявлена, что ради краткости мы можем рассмотреть их здесь частью совместно. Первый вопрос был следующий (ср, стр. 18— 20): можно ли в случае заторможенного поезда признать невозможным установить, что именно находится в состоянии неравномерного движения, как этого требует общая теория относительности, несмотря на то, что последствия неравномерного движения односторонне обнаруживаются только внутри поезда. Второй вопрос касается логически недопустимого эксперимента (ср. примеч. 10, стр. 19—20): с точки зрения общей теории относительности, равноценны между собой оба допущения, как то, что вселенная вращается вокруг земли, так и то, что вращается земля, вселенная же находится в покое; но, так как в первом случае пришлось бы принять для движения вселенной скорость, превышающую скорость света, — то не означает ли это допущения внутреннего противоречия общей теории относительности, поскольку она же сама исключает возможность скоростей, превышающих скорость света?
Г. Эйнштейн ссылался, само собой разумеется, на поля тяготения, которые в его теории должны сопровождать каждый случай неравномерного движения. Тем не менее выходило так, что гипотеза этих полей тяготения только для того и выдвигалась, чтобы установить всеобщее значение принципа относительности и получить возможность применения его ко всем случаям. Но отсюда еще не следовало, чтобы эти поля имели еще и дальнейшее отношение к действительности, делающее необходимым их признание, несмотря на связанные с ними теоретические затруднения (ср. стр. 27). При всем этом оставалось вне сомнения, что каждое наступление неравномерного движения сопряжено с известными состояниями окружающего его эфира (или, как предпочитает выражаться теория относительности, “пространства”, ср. стр. 36). И пока эйнштейновские поля тяготения не удовлетворяют запросам здравого рассудка, до тех пор всегда позволительно будет сомневаться в том, насколько правильно они отражают указанные состояния эфира. Напрасно здесь г. Эйнштейн пытается вызвать недоверие к здравому рассудку. Теория, которая оказывается не в силах дать на такие простые вопросы, как два приведенных выше, столь же простые и удовлетворительные с точки зрения здравого рассудка ответы, не может считаться безупречной. Она может приводить к успешным результатам, заслуживающим удивления; может быть способной к исправлению и даже, пожалуй, уже проявлять признаки совершенствования, но она не должна выступать с теми обычными черезчур повышенными претензиями, которые вызвали наше осуждение в настоящей статье. Менее же всего должна была бы она выступать с такими претензиями пред лицом широкой публики, которая по своей неосведомленности легко может быть введена в заблуждение. Выло бы правильнее или знакомить широкую публику, на-ряду с достижениями теории, также и с вызываемыми ею сомнениями, чтобы таким образом показать ей всю серьезность исследуемых вопросов, или же вовсе ей ничего не сообщать.
Но что касается второго из приведенных вопросов, то на него и вообще не было дано никакого решительного ответа и потому можно определенно утверждать, что вытекающие из логически недопустимого эксперимента скорости, превышающие скорость света, представляют для общей теории относительности действительное затруднение.
И в других случаях я был в конце концов изумлен, до чего мало, казалось, был подготовлен г. Эйнштейн к ответу на мои вопросы,хотя уже два года, как они появились в печати, о чем ему было известно. Несмотря на это, и он и еще другой специалист с совершенной определенностью создавали среди газетных читателей впечатление о безусловном превосходстве его теории по сравнению с выдвинутым мною кругом идей. Так как я не являюсь ни приверженцем ни противником какого-либо принципа, но хотел бы быть просто естествоиспытателем, как это уже было выяснено на стр. 14, то я принял бы, как известный плюс, всякое доказательство недостаточной основательности моих рассуждений в каких-либо пунктах, если бы только такое доказательство было приведено (ср. также примеч. к на етр. 28), и притом было бы сделано по существу дела, т. е. так, как вообще протекала наугеймская дискуссия. Во всей дискуссии только у г-на Ми извлек я единственное разъяснение, которое указываю дальше в тексте.
Достаточно принять во внимание, что для любого случая вращения на земле какого-либо тела, хотя бы оно проделывало один оборот в 6000 лет, придется допустить скорость, превышающую скорость света, уже для созвездия Ориона, и во много сот раз большую скорость для во много сот раз более далеких туманностей, если только мы решительно отказываемся приписать вращение исключительно нашему телу и считаем возможным приписывать его окружающему данное тело миру.
Это во всяком случае означает, что в теории самой по себе, совершенно независимо от ее согласования или несогласования с действительностью, т.е., следовательно, с логической стороны, не все в порядке. Внутреннее противоречие, которое она содержит, отпадает, если, согласно предложению г-на Ми, признать преимущественными некоторые, называемые им “рациональными (vernunftgemass)”, системы координат, а другие возможные системы исключить (Ср. G. Mie., Physik. Zeitschr., 18, S. 551, Б74, 596. 1917 и Armalen d. Physik, 62, S. 46, 1920.).
Тем самым бил бы также разрешен первый из поставленных нами вопросов; нам надо бы только устранить систему координат, связанную с поездом, из числа систем, которые мы можем считать покоющимися, и, напротив, применить систему координат, связанную с землей, в качестве рациональной системы, чтобы вопрос потерял свою трудность. Но этот выход означает не спасение, а упразднение принципа относительности в его наиболее общей форме, в той форме, в которой он был выдвинут г. Эйнштейном, вал отвечающий простому и в то же время всеобъемлющему закону природы, и в которой он поэтому и вызвал к себе исключительный интерес с философской точки зрения. Ибо в этой форме принцип утверждал, что течение всего совершающегося в природе, следовательно, формулирование общих законов природы, не зависит от выбора исходной системы, вследствие чего ни в одном случае нет возможности абсолютно решить при помощи каких-либо наблюдений природы, что именно покоится и что двигается.
В этом действительно и заключался, согласно происхождению принципа, его простой смысл, если таковой вообще имеется, в философском отношении было не к чему вводить более сложную и обставленную оговорками формулировку. Если она тем не менее необходима, то, хотя принцип и сохранит свою возможную ценность, как вспомогательного средства в естествознании, он должен будет отказываться от притязаний на свою важность для общего мышления, лля понимания природы в целом.
А тогда и все исходные системы должны быть совершенно равноценны по вытекающим из них выводам (поэтому-то г. Эйнштейн неуклонно стремится представить, как принципиально равноценные, различные системы координат, даже и такие, которые ведут или к совершенно очевидным трудностям или к внутренним противоречиям. Но в действительности, такая равноценность не имеет места, как это было выяснено на примере двух наших вопросов и в более строгой форме — исследованиями г. Ми.
Только практические, а не принципиальные основания должны, по заявлению г. Эйнштейна, удержать нас от выбора некоторых систем координат. Но в этом содержится указание, что некоторые, самим принципом совершенно не обозначаемые, системы координат ведут к заблуждениям, т.е. именно признание (хотя и в скрытом виде) неосновательности высших теоретических притязаний принципа. Это, конечно, отнюдь не умаляет его возможной эвристической ценности, содействующей успехам исследования.
Итак, при теперешнем положении вопроса общий принцип относительности не может быть принят в качестве закона природы в строгом смысле слова. При этом из исследований г-на Ми, повидимому, вытекает (считаю необходимым особо здесь отметить, что это не вошло в мое прешедствующее изложение), что общий принцип относительности даже и в том случае не может быть признан законом природы, если приписываемую ему общезначимость ограничить только случаями действия сил, пропорциональных массе (принцип тяготения, см. стр. 25).
Неограниченный общий принцип относительности, проводимый строго последовательно, обнаруживает свою несостоятельность на обоих изложенных нами вопросах. Напротив, принцип тяготения (представляющий предложенное мною ограничение общего принципа относительности) не связан ни с какими трудностями по отношению к первому вопросу (так как к этому случаю он совершенно не относится), но и по отношению ко второму вопросу он оказывается внутренне противоречивым. Опасность такого внутреннего противоречия, как теперь кажется, грозит каждой попытке применения принципа относительности к неравномерному движению, если только не пытаться избегнуть ее при помощи соответственных искусственных приемов. Таким образом, можно было бы сказать, что принцип тяготения представляется в большей мере свободным от возражений, нежели общий принцип относительности, но что и он со своей стороны не может быть безусловно признан вполне безупречным. Все же разлачие в дефектах обоих принципов достаточно велико для того, чтобы оправдать эту трактовку и то подчеркивание принципа тяготения, которое было сделано в настоящем изложении.
И если мы хотим избегнуть ложных выводов, то мы можем его принять только в качестве эвристического принципа. При его применении для устранения возможности ложных выводов (ср. примеч. 11, стр. 21), придется прибегать к допущению не вытекающих из самого принципа условий, или же ему должно сопутствовать особое искусство иди счастие в дополнительных гипотезах. Таким образом, при известных обстоятельствах, он может дать нам правильное и ценное познание совершенно новой зависимости наблюдаемых явлений. Но действительное доказательство правильности сделанных таким путем предсказаний может дать только дополнительная проверка их опытом, как бы математически безупречно ни были они выведены из принципа.
Здесь мы замечаем различие по сравнению с другими физическими принципами, например, с принципом сохранения энергии. Заключения, математически точно выведенные из этих принципов, при правильной трактовке соответствующих понятий, могут непосредственно считаться столь же верными, как и вся совокупность данных опыта, лежащих в основе принципа, уже доказавших его правильность. Это различие агожет быть обусловлено новизной принципа относительности, не позволившей еще с достаточной ясностью установить границы его приложимости, или дополнительные условия, которые подлежат соблюдению при его применении и потому должны быть отнесены к существу принципа. Во всяком случае при таком положении вещей, мне представляется, что в вопросе о перемещении перигелия Меркурия „выведенная" Гербером правильная количественная зависимость (пусть даже ее вывод не был безупречен), попрежнему, в виду того, что она была уже установлена значительно раньше, заслуживает внимания наряду с формулой Эйнштейна, которая тоже, как следует из сказанного, лишь по видимости представляется строго выведенной только из одного принципа (ср. стр, 11—14 ). Таково мое мнение об открытии Гербера совершенно независимо оттого, что мне представляется абсолютно недопустимым, как это имело место, упрекать в „негодной стряпне" или в чем-либо подобном давно умершего человека, который установил некоторую зависимость (а именно, конечное уравнение перемещения перигелия), признаваемую на ми правильной, т. е. совершил таким образом нечто полезное (хотя бы он неудачно присоединил к этому спорное доказательство, без всякого, однако, намерения выставлять его напоказ). Я думаю, что, если бы Пифагор только опубликовал, но не доказал своей теоремы, мы все же и сейчас еще называли бы ее по его имени, — принимая во внимание, что она с достаточной быстротой стала широко известной, в виду того, что теорема оказалось правильной и ценной.
Принцип относительности представляет собою, возможно, принцип, имеющий большую практическую ценность, но не такой, на котором можно было бы построить новое мировоззрение, или который был бы призван разом упразднить испытанные, но несколько иначе идущие пути исследования природы, в то время как сам он дает новый, в данный момент весьма оспариваемый путь.
Можно также сказать, что в обобщенном принципе относительности мы имеем дело с системой угадывания процессов природы, системой, облеченной в форму математических количественных отношений. Такое предсказывание с помощью достаточно обширного математического аппарата вообще играет в современной физике значительную роль по сравнению с прежним временем. Укажем, например, на построения теории квантов. Метод этот оказался чрезвычайно полезным в случаях, когда возможно было наряду с ним прибегнуть к контролю посредством наблюдения. Но было бы ошибкой вилеть, по примеру некоторых математиков, конечную цель развития физики в ее превращении в одну из побочных отраслей математики. Природа, исследование которой составляет задачу физики, не так скоро исчерпает свои чудеса, которыми она не перестает поражать даже самых глубоких исследователей. Конечно, дело вкуса —принимать ли те или другие положения, заслуживающие дальнейшей опытной проверки, пользуясь при этом математическими выводами, или нет, в тех случаях, когда вывод не дает точной связи этих положений с данными опыта или с посылками, имеющими простой физический смысл.
Возможное практическое значение принципа должно быть тем выше оценено, что он помог, быть может, правильно указать новые соотношения в области учения о тяготении, т.-е. в области применения той силы, к познанию которой со времени Ньютона и Еавендиша, т.-е, в течение промежутка времени, превышающего сто лет,не удавалось систематически приблизиться на шаг дальше (К чему же, раз дело идет о таких достижениях, выставлять еще преувеличенные,— при строгом анализе,—притязания.)
В этом отношении, как известно, мы имеем пред собой три результата: уравнение перемещения перигелия (указанное уже Гербером), искривление световых лучей и смещение под действием центров тяготения спектральных линий к красному концу спектра. Теперь следует проверить их на опыте, который и должен решить вопрос о большей или меньшей ценности теории.
Что касается перемещения перигелия и искривления световых лучей, то уже раньше было указано, в каком положении находится в настоящее время проверка их на опыте, в чем по самой сути вещей здесь не так скоро можно ждать повторения возможности такой проверки. Напротив, более подвигается третий вопрос о смещении спектральных линий по направлению к красному концу спектра (ср. примеч. стр. 24). При этом, все наблюдения, произведенные авторитетнейшими исследователями и наилучше обставленные, повидимому, до сих пор согласно приводили к отрицательному результату (Содержательный обзор опубликованного по этому вопросу материала дан в указанной на стр. 47 и только что появившейся в Annalen d. Physik работе Г. Вихерта.).
Во всяком случае для этого вывода теории представлялось неблагоприятным то обстоятельство, что на наугеймской дискуссии только боннские наблюдатели могли сделать сообщения в его пользу (с положительным разультатом), при чем, насколько известно, их наблюдения были обставлены менее совершенно, чем у американских наблюдателей, пришедших к отрицательным результатам, также, как это было я в новых недавних опытах Юлиуса в Утрехте (W. Н. J u 11 i u s u. P. H. van С i 11 е г t, Kon. Akademie лап Wettenschappen te Amsterdam, 29 Mai 1920,).
Что касается боннских наблюдений, то вызываемые ими сомнения напоминают мне о двух случаях, показывающих, что спектрально-аналитическим наблюдениям в Боннском Физическом Институте отнюдь не сопутствует традиционная удача. Вспомним совершенно неверные указания относительно пространственного распределения спектрального излучения в пламени вольтовой дуги с электродами из щелочных металлов. Еще и в настоящее время эти исследования служат источником заблуждений в недостаточно критически обработанных сочинениях (см, по этому поводу Heidelb. Akad. 1914 А 17. сноска 94, S. 64, также Starks Jahrb., 13, S. 234, 1916). Так же было и с наблюдениями над распределением в спектре лучистой энергии, возбуждающей полосы спектра фосфоресценции, поведшими к ложным выводам, в виду предполагавшейся большей точности их по сравнению с прежними опытами (см. Heidelb. Akad., 1915 А, 19 примеч. 1, S. 3).
Таким образом в настоящее время еще не приходится говорить об экспериментальном подтверждении выводов, касающихся смещения спектральных линий к красному концу спектра. В двух других вопросах выводы теории, правда, подтвердились, но, однако, таким образом (как это было разъяснено на стр. 23—24, что остается еще под вопросом, можно ли вообще отнести это подтверждение к принципу тяготения. Дальнейшее покажет только будущее. Тогда можно будет видеть, насколько принцип тяготения доказал, но крайней мере, свою эвристическую ценность, между тем как общий принцип относительности уже опровергнут простейшим повседневным опытом.
Комментарии
Принцип сохранения энергии-закон.
Комментарий удален модератором
Комментарий удален модератором
Иначе наши "искуственныё спутники" попадают не в ту область пространства и не в то время...
1. сложилась альтернативная общепринятой физика
2. она неоднородна и взаимопротиворечива в исполнении разных авторов
3. я приветствую любые, с моей точки зрения , разумные попытки анализа самых фундаментальных понятий, к коим относится и тяготение.
4. автор публикации Николай Зуб, вероятно, относится к числу сторонников О.Е.Акимова, который не признаёт альтернативщика Гришаева.
5. Мне нравится точка зрения последнего ( и по поводу тяготения тоже), но это не значит, что я не буду стараться вникнуть и в иные точки зрения .
Насколько я прав в осторожности высказываний показывает даже конкретный пример из данных обсуждений - с чего Николай Зуб взял, что я с блоггером Влад Дором клоны ?
Больше не отклоняйтесь от темы.
Комментарий удален модератором
Комментарий удален модератором
Вот таких "тёзок", гоните, Николай из сообщества!!
В ЧС никто не отправлял.
>А чё вы мои комментарии удаляете?! Правда- глаза колет?
Но мусорить не надо.
Зачем клон?
Вы считаете допустимым оскорблять человека в первый раз зашедшего на ваш пост и в ваше сообщество ? Я с вами не знаком, нигде не сталкивался, хотя бы по той причине, что вас не существовало в Гайдпарке - с чего такая неприязнь ?
Комментарий удален модератором
Комментарий удален модератором
Комментарий удален модератором
Комментарий удален модератором
Комментарий удален модератором
Комментарий удален модератором