Спираль Фибоначчи
На модерации
Отложенный
Спираль Фибоначчи
Числа Фибоначи - числовая последовательность, где каждый последующий член ряда равен сумме двух предыдущих, то есть: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368,.. 75025,.. 3478759200, 5628750625,.. 260993908980000,.. 422297015649625,.. 19581068021641812000,.. Изучением сложных и удивительных свойств чисел ряда Фибоначчи занимались самые различные профессиональные ученые и любители математики.
В 1997 году несколько странных особенностей ряда описал исследователь Владимир Михайлов, который был убежден, что Природа (в том числе и Человек) развивается по законам, которые заложены в этой числовой последовательности...
Замечательным свойством числового ряда Фибоначи является то, что по мере увеличения чисел ряда отношение двух соседних членов этого ряда асимптотически приближается к точной пропорции Золотого сечения (1:1,618) основе красоты и гармонии в окружающей нас природе, в том числе и в человеческих отношениях. Отметим, что сам Фибоначчи открыл свой знаменитый ряд, размышляя над задачей о количестве кроликов, которые в течении одного года должны родиться от одной пары. У него получилось, что в каждом последующем месяце после второго число пар кроликов в точности следует цифровому ряду, которое ныне носит его имя. Поэтому не случайно, что и сам человек устроен по ряду Фибоначчи. Каждый орган устроен в соответствии с внутренней, или внешней двойственностью.
Числа Фибоначчи привлекли математиков своей особенностью возникать в самых неожиданных местах. Замечено, например, что отношения чисел Фибоначчи, взятых через одно, соответствуют углу между соседними листьями на стебле растений, точнее, они говорят, какую долю оборота составляет этот угол: 1/2 - для вяза и липы, 1/3 - для бука, 2/5 - для дуба и яблони, 3/8 - для тополя и розы, 5/13 - для ивы и миндаля и т. д. Эти же числа вы найдете при подсчете семян в спиралях подсолнуха, в количестве лучей, отражающихся от двух зеркал, в количестве вариантов маршрутов переползания пчелы от одной соты к другой, во многих математических играх и фокусах.
В чем разница между спиралями золотого сечения и спиралью Фибоначчи? Спираль золотого сечения идеальна. Она соответствует Первоисточнику гармонии. Эта спираль не имеет ни начала, ни конца. Она бесконечна. Спираль Фибоначчи имеет начало, от которого она начинает “раскрутку”. Это очень важное свойство. Оно позволяет Природе после очередного замкнутого цикла осуществлять строительство новой спирали с “нуля”.
Следует сказать, что спираль Фибоначчи может быть двойной. Существуют многочисленные примеры этих двойных спиралей, встречающихся повсюду. Так спирали подсолнухов всегда соотносятся с рядом Фибоначчи. Даже в обычной сосновой шишке можно увидеть эту двойную спираль Фибоначчи. Первая спираль идет в одну сторону, вторая - в другую.
Если посчитать число чешуек в спирали, вращающейся в одном направлении, и число чешуек в другой спирали, можно увидеть, что это всегда два последовательных числа ряда Фибоначчи. Число этих спиралей 8 и 13. В подсолнухах встречаются пары спиралей: 13 и 21, 21 и 34, 34 и 55, 55 и 89. И отклонений от этих пар не бывает!.. У Человека в наборе хромосом соматической клетки (их 23 пары), источником наследственных болезней являются 8, 13 и 21 пары хромосом...
Но почему в Природе именно этот ряд играет решающую роль? На этот вопрос может дать исчерпывающий ответ концепция тройственности, определяющая условия ее самосохранения. При нарушении «баланса интересов» триады одним из ее «партнеров», «мнения» двух других «партнеров» должны быть скорректированы. Особенно наглядно концепция тройственности проявляется в физике, где из кварков построили «почти» все элементарные частицы. Если вспомнить, что отношения дробных зарядов кварковых частиц составляют ряд , а это и есть первые члены ряда Фибоначчи, которые необходимы для формирования других элементарных частиц.
Возможно, что спираль Фибоначчи может играть решающую роль и в формировании закономерности ограниченности и замкнутости иерархических пространств. Действительно, представим, что на каком-то этапе эволюции спираль Фибоначчи достигла совершенства (она стала неотличима от спирали золотого сечения) и по этой причине частица должна трансформироваться в следующую «категорию».
Эти факты еще раз подтверждают, что закон о двойственности дает не только качественные, но и количественные результаты. Они заставляют задуматься о том, что окружающий нас Макромир и Микромир эволюцирует по одним и тем же законам- законам иерархии, и что эти законы едины для живой и для неживой материи.
Все это свидетельствует о том, что ряд чисел Фибоначчи представляет собой некий зашифрованный закон природы.
Цифровой код развития цивилизации можно определить с помощью различных методов в нумерологии. Например, с помощью приведения сложных чисел к однозначным (например, 15 есть 1+5=6 и т.д.). Проводя подобную процедуру сложения со всеми сложными числами ряда Фибоначчи, Михайлов получил следующий ряд этих чисел: 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 8, 1, 9, затем все повторяется 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 4, 8, 8,.. и повторяется вновь и вновь... Этот ряд также обладает свойствами ряда Фибоначчи, каждый бесконечно последующий член равен сумме предыдущих. Например, сумма 13-го и 14-го членов равна 15, т.е. 8 и 8=16, 16=1+6=7. Оказывается, что этот ряд периодичный, с периодом в 24 члена, после чего, весь порядок цифр повторяется. Получив этот период, Михайлов выдвинул интересное предположение - не является ли набор из 24 цифр своеобразным цифровым кодом развития цивилизации?
<hr/>
Опубликовано 28 апреля 2020 | Комментариев 0 | Прочтений 198
Комментарии
Переписала Светлана Сергиенко.
Спираль Архимеда - плоская кривая, которую описывает точка, движущаяся равномерно-поступательно от центра 0 по равномерно-вращающемуся радиусу.
Построение архимедовой спирали заданным шагом S - расстояние от центра 0 до точки VIII, выполняется в следующей последовательности:
Из центра 0 проводят окружность радиусом, равным шагу S спирали и делят шаг и окружность на несколько равных частей Точки деления нумеруют;
Из центра 0 радиусами 01, 02, 03, ... проводят дуги до пересечения с соответствующими радиусами в точках I, II, III, ...;
Полученные точки принадлежат спирали Архимеда с заданным шагом S и центром 0.