Как количество измерений влияет на наше восприятие реальности?

Агата Коровина24 маяПопулярное

Как количество измерений влияет на наше восприятие реальности?

Согласно теории относительности, мы живем в четырех измерениях, согласно теории струн — в десяти, физикам-ядерщикам удобно работать с шестью измерениями, остальным физикам мало и двадцати шести. Так сколько измерений пронизывают нашу жизнь и сможем ли мы согнуть их, как лист бумаги, чтобы моментально путешествовать по космосу и не угодить в «Кащенко»? Вместе с Александром Прохоровым, научным сотрудником кафедры физики космоса физфака МГУ, «Нож» разбирается в устройстве Вселенной и геометрии, которая его описывает.

Поделиться39Пошерить63РепостнутьТвитнуть

— Прежде чем мы уйдем в дебри физики, разъясни, что такое «пространство» и что такое «размерность пространства»?

— Ох, это очень сложный вопрос… Смотри, чтобы впихнуть стол в лифт и перевезти его, нужно знать его ширину, глубину, высоту и вес. С размерностью пространства дела обстоят примерно так же. Размерность — это то количество независимых величин, которое необходимо измерить, чтобы полностью описать объект.

— Где границы одного пространства и границы другого?

— Нет границ. Мы живем в одном пространстве, мы просто не видим его разные грани. Вообще, пространство — это вместилище всего материального и нематериального, все вещество находится в пространстве, все излучение, все волны — огромная совокупность, которая простирается в разные измерения на миллионы световых лет — все это есть пространство.

— Хорошо, процитирую незабвенного историка физики Геннадия Горелика: «Поиски ответа на вопрос, почему наше пространство трехмерно, не более осмысленны, чем поиски ответа на вопрос, почему наше Солнце — звезда именно такого типа, а не белый карлик или красный гигант». Почему тогда возникают споры по поводу количества измерений?

— Здесь ничего сложного нет. Дело в том, что мы все привыкли, что у нас есть три измерения, в которых мы живем. Все объекты вокруг нас в обычной человеческой жизни трехмерны. Но многомерность пространства очень сильно волновала математиков и геометров, они не хотели верить, что в нашем пространстве всего три измерения и оно в каком-то смысле плоское. Только не надо путать с плоской Землей и экспериментами с флажками на лодках, которые плавали по прямой по Бедфордскому каналу в Великобритании. Действительно, флажки не скрывались за горизонтом, как этого требует форма шарообразной Земли, но совсем не потому, что она не шар, а потому, что воздух преломляет свет. Когда мы говорим о «плоском» пространстве, мы имеем в виду, что свет распространяется в нем по прямой на любые расстояния, будь то солнечные зайчики в комнате или свет от далеких звезд и планет. Многочисленные эксперименты показывали, что наше пространство вполне себе «плоское». Это было привычной картиной до плеяды выдающихся физиков и математиков: Эйнштейна, Минковского, Планка и других. Но вдруг они озаботились, как возникает и распространяется свет, и тут-то понесла-а-ась….

Вернемся к измерениям.

Наверное, первым неосознанным добавлением измерения было добавление времени. Солнце встало, солнце село — сутки. Все повторилось — год. Время, про которое никто не думал как про четвертое измерение, постепенно уточнялось, уточнялось, уточнялось, уточнялось и стало довольно точным.

Появились независимые от светил механические часы, потом — атомные. Пожалуй, первый, кто серьезно подумал о том, что время может играть роль четвертого измерения, был Эйнштейн. Он сказал что-то вроде: «Ребят, да что вы мучаетесь с этими формулами для распространения света, когда одна в другую не переходит, давайте просто введем четвертое измерение в виде времени и через него все свяжем». Так получилось пространство-время. Оказалось, что во Вселенной нет единого времени. Не в том смысле, что есть московское и нью-йоркское время, а в том, что на Земле и, например, на Луне часы будут идти совершенно по-разному — все относительно. Время зависит от скорости перемещения объекта в пространстве. Чем быстрее летит объект, тем медленнее для него тикают часы: то есть часы на Луне будут вечно отставать. Время и пространство связаны — это и есть четырехмерное пространство-время.

— Согласно теории Сасло, Вселенная в начале расширения была двумерная. Это как понимать?

— Вполне вероятно, что на тех энергиях, на тех скоростях, при тех плотностях, которые тогда были, другие измерения были неразличимы. Физики сейчас считают, что есть некоторый размер — квант пространства, ниже которого опуститься нельзя. Это даже не субатомный размер, а суб-суб-суб-суб-суб-суб-суб-субатомный размер, который нельзя различить. Возможно, изменения находились как раз в субзачаточном положении, свернутые в трубочку минимального диаметра, так что их можно было считать одной точкой.

— Потом раскрылись еще две трубочки. Но ведь и четырех измерений нам мало?

— Да, даже в рамках нашей Вселенной, даже в рамках нашей Галактики уже ясно, что четырех измерений слегка недостаточно.

Недостаточно, чтобы точно описать все явления, которые мы наблюдаем. В общей теории относительности Эйнштейн размышлял: вот есть гравитация, сила тяжести, а действительно ли они, собственно, существуют? И провел мысленный эксперимент: если мы находимся в лифте и чувствуем, как мы давим на пол, это означает, что мы находимся в поле тяжести Земли или это лифт движется с большим ускорением вверх? Выяснилось, что с точки зрения физики, обе эти трактовки для находящегося в лифте неразличимы. И Эйнштейн предложил отказаться от гравитации как таковой, а вместо нее ввести искажение четырехмерного пространства-времени, в котором все тела начинают приобретать ускорение. В итоге все законы всемирного тяготения и силы, которые когда-то придумал Ньютон, современные ученые свели к геометрии, увеличив количество геометрических измерений. Получилось, что гравитации фактически нет, есть только искажение пространства-времени.

— Так! Дай гуманитарию картинку, пожалуйста. Куда делась гравитация?

— Хорошо. Мы все привыкли, что если уроним яблоко, оно обязательно упадет на землю, как когда-то оно упало на голову Ньютону. И объяснялось это тем, что на яблоко действует сила — закон всемирного тяготения, то есть Земля притягивает яблоко.

Можно уронить перышко, выстрелить ядром из пушки — мы увидим, что все объекты падают с разной скоростью. Но! Не будь сопротивления воздуха, все они падали бы на Землю одинаково.

И если мы поместим перышко, яблоко и ядро в колбу, из которой откачаем воздух, а затем быстро ее перевернем, мы это увидим — все предметы упадут с одной скоростью. Штука еще в том, что так же, как Земля притягивает перышко, ядро и яблоко, так и перышко, ядро и яблоко притягивают Землю. Но эти предметы гораздо меньше, и нам кажется, что падают именно они. Получается, что для описания притяжения тел, по крайней мере на малых расстояниях, одинаково хорошо подходят как старые-добрые три измерения плюс законы Ньютона, так и новомодные четыре измерения плюс «искаженная» геометрия пространства-времени. Но законы Ньютона гораздо проще, и ими может воспользоваться даже школьник: он достаточно точно решит задачу с пресловутым яблоком. А вот без теории Эйнштейна с ее элегантной, но сложной четырехмерной математикой уже никак не обойтись на глобальных космических расстояниях. Хотя, повторюсь, и этих четырех измерений уже не хватает.

— Эрн Фест высчитал, что трехмерность — самая устойчивая модель, потому что если измерений будет больше, то все затянется либо в центр, либо разбросается по сторонам. Что ты думаешь по этому поводу?

— Наша Вселенная невероятных размеров, и тут еще недавно выяснилось, что на огромных масштабах она расширяется, и расширяется с ускорением. Но так как нас до сих пор не сжало в точку и не разорвало на части при большем, чем три, количестве измерений, значит, что-то идет не так в этой красивой теории. Вдобавок открыты еще далеко не все движущие Вселенной силы и законы.

— А какая теория подходит?

— Пока непонятно. Мы смотрим на далекие Галактики, видим, что они вращаются слегка по-своему.

Как в любой школьной задаче, мы пытаемся это объяснить, пытаемся перерешать, перерешать, перерешать — у нас ничего не получается. Дело в том, что для тех Галактик закон всемирного тяготения работает слегка неправильно, либо мы видим не всю массу этих Галактик.

Пока мы точно видим одну массу, ту, из которой состоят звезды, межзвездный газ, планеты. Если просуммируем всю массу, мы получаем некоторое число. Если мы подставим это число в формулу для вращения, выясняется, что края Галактики должны вращаться очень медленно, но они вращаются гораздо быстрее, как будто массы не столько, а в 10 раз больше. Много раз пытались все это дело пересчитать, потом плюнули, сказали: «Ну, ладно, одну массу мы видим, а еще девять, которые нужны, чтобы все описать, пока не обнаружили, будем искать. Но запишем, что эта масса есть». Вот она и темная материя. А тут еще новость, что Вселенная расширяется. Должна быть какая-то таинственная энергия, которая ее расталкивает, изнутри распирает. Мы почесали голову, тут мы уже совсем ничего не видим, поэтому просто ввели темную энергию.

— Не считаешь, что главное препятствие в изучении космоса и пространства — это экстраполяция? Мы пытаемся перенести все законы, которые у нас работают тут, во вне, поэтому и появляются темная материя и темная энергия.

— Это действительно самая главная проблема. На частностях мы пытаемся построить общую картину. Естественно, в какой-то момент выясняется, что наша модель оказывается неверной. То же самое было в начале XX века, когда пытались объяснить свечение нагретых объектов.

Когда мы берем железяку, суем в костер, она начинает докрасна раскаляться. Это свечение очень долго не могли объяснить ни физики, ни химики. Было несколько формул, но их экстраполяция приводила к совершенно космически неверным результатам, которые даже в голове не укладывались. Экстраполировать и правда было нельзя. Сейчас с этой проблемой мы сталкиваемся уже в масштабах Вселенной.