Физики сделали самые точные в мире часы

Сконструированные физиками из Национального института стандартов и технологий (США) оптические атомные часы накапливают ошибку в одну секунду более чем за 3,7 млрд лет.

Нынешний американский эталон частоты и времени — цезиевые часы NIST-F1 — ошибается на секунду \"всего\" за 100 млн лет.

Столь значительное улучшение характеристик объясняется использованием иона алюминия 27Al+, у которого интересующий ученых переход 1S0 — 3Р0 совершается на частоте в 1,121 ПГц. Соответствующая частота в случае цезия равняется лишь 9,2 ГГц — а значит, такие часы делят секунду на меньшее число частей и обеспечивают меньшую точность.

Новое устройство стало вторым в серии так называемых часов с квантовой логикой. В первом варианте, представленном в 2008 году, также использовался ион алюминия, который исследователи располагали в электромагнитной ловушке на расстоянии четырех тысячных долей миллиметра от иона 9Ве+, испускающего фотоны в условиях эксперимента. Под действием лазерного излучения с частотой, соответствующей частоте перехода, ион Al+ \"перепрыгивает\" в новое энергетическое состояние (\"1\"), однако при недостаточном согласовании параметров излучения его состояние (\"0\") не изменяется.

В последнем случае при использовании дополнительных лазерных импульсов можно добиться того, что испускание бериллием фотонов прекратится; регистрируя это событие, ученые определяют, что ион алюминия остался в состоянии \"0\". Если же подача дополнительных импульсов не останавливает излучение, определяется состояние \"1\".

Суть эксперимента сводится к точной подстройке частоты лазера, воздействие которого вызывает переход \"0\" — \"1\". Ее измерение выполняется по методу \"гребенки частот\".

В обсуждаемом варианте этих часов бериллий заменен ионом 25Mg+, который в большей степени соответствует алюминию по массе. Физики 56 раз сравнили два созданных ими устройства, варьируя длительность периода сравнения от 15 минут до 3 часов, и выяснили, что они \"тикают\" практически с одинаковой частотой, однако новый вариант более чем вдвое превосходит старый по точности.

Такие часы уже сейчас применяются для оценки возможных изменений некоторых фундаментальных физических констант (к примеру, постоянной тонкой структуры).