Россия, Политика, Власть,
ХИМИЧЕСКАЯ ВОЙНА, КАК ВОЗДЕЙСТВИЕ НАРКОТИЧЕСКОЙ ЗАВИСИМОСТИ.
В качестве примера дадим характеристику некоторым загрязняющим опасным выбросам :
Оксид углерода. Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 1250 млн. т. Оксид углерода является соединение, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.
Сернистый ангидрид. Выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд (до 170 млн. т в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 65 % от общемирового выброса .
Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 11 км от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.
Сероводород и сероуглерод. Поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.
Оксиды азота. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество оксидов азота, поступающих в атмосферу, составляет 20 млн. т в год.
Соединения фтора. Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторосодержащие вещества поступают в атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.
Хлор. Зеленовато-желтый газ с характерным удушливым запахом. Является сильным окислителем. Хлор тяжелее воздуха, скапливается в подвалах, низинах местности, хранится и перевозится в сжиженном состоянии. Поступает в атмосферу от химических предприятий, производящих соляную кислоту, хлорсодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией. В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов (мышьяк, фосфор, сурьма, свинец, пары ртути и редких металлов, смоляные вещества и цианистый водород).
Углеводороды. Токсичность нефтепродуктов и выделяющихся газов определяется сочетанием углеводородов, входящих в их состав. От преобладания углеводородов того или иного ряда зависят токсические свойства нефтепродуктов. Так, тяжелые бензины являются более токсичными по сравнению с легкими. Токсичность смеси углеводородов в составе нефтепродуктов, выше токсичности отдельных компонентов смеси. Значительно возрастает токсичность нефтепродуктов при переработке сернистых и многосернистых нефтей. Основной вредностью при переработке нефтей, содержащих сернистые соединения, является комбинация углеводородов и сероводорода. Комбинированное действие углеводородов и сероводорода проявляется быстрее, чем при изолированном действии углеводородов.
Аэрозоли. Это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц составляет 1-5 мкм. В атмосферу Земли ежегодно поступает около 1 куб. км пылевидных частиц искусственного происхождения. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей.
Производственный процесс выброс пыли, млн. т/год
ПРОИЗВОДСТВЕННЫЙ ПРОЦЕССВЫБРОС ПЫЛИ, МЛН. Т/ГОД Сжигание каменного угля. 93,600 Выплавка чугуна. 20,210 Выплавка меди (без очистки. 6,230 Выплавка цинка. 0,180 Вылавка олова (без очистки). 0,004 Выплавка свинца. 0,130 Производство цемента. 53,370
Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже - оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест. Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Она образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях. Постоянными источниками аэрозольного загрязнения являются промышленные отвалы - искусственные насыпи из переотложенного материала, преимущественно вскрышных пород, образуемых при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств - измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов всегда сопровождается выбросами пыли и других вредных веществ в атмосферу. азота и серы часто в виде аэрозольных частиц. При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана.
Фотохимический туман (смог) представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами.Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ.
Проблема контролирования выброса в атмосферу загрязняющих веществ промышленными предприятиями:
приоритет в области разработки предельно допустимых концентраций в воздухе принадлежит СССР. Обобщение всей информации по ПДК, получаемой всеми ведомствами, осуществляется в ГГО (Главной Геофизической Обсерватории). Чтобы по результатам наблюдений определить значения воздуха, измеренные значения концентраций сравнивают с максимальной разовой предельно допустимой концентрацией и определяют число случаев, когда были превышены ПДК, а также во сколько раз наибольшее значение было выше ПДК. Среднее значение концентрации за месяц или за год сравнивается с ПДК длительного действия - среднеустойчивой ПДК. Состояние загрязнение воздуха несколькими веществами, наблюдаемые в атмосфере города, оценивается с помощью комплексного показателя - индекса загрязнения атмосферы (ИЗА). Для этого нормированные на соответствующее значения ПДК и средние концентрации различных веществ с помощью несложных расчетов приводят к величине концентраций сернистого ангидрида, а затем суммируют. Максимальные разовые концентрации основных загрязняющих веществ были наибольшими в Норильске (оксилы азота и серы), Фрунзе (пыль), Омске (угарный газ). Степень загрязнения воздуха основными загрязняющими веществами находится в прямой зависимости от промышленного развития города. Наибольшие максимальные концентрации характерны для городов с численностью населения более 500 тыс. жителей. Загрязнение воздуха специфическими веществами зависит от вида промышленности, развитой в городе. Если в крупном городе размещены предприятия нескольких отраслей промышленности, то создается очень высокий уровень загрязнения воздуха, однако проблема снижения выбросов многих специфических веществ до сих пор остается нерешенной.
Последствия воздействия (влияние выбросов на здоровье человека)
Имеются многочисленные научные данные, свидетельствующие о связи легочной, онкологической, кожной и другой патологии с характером и уровнем загрязнения воздуха. Многократно подтверждена, например, зависимость обострения хронического бронхита от уровня загрязнения воздуха сернистым газом, характеризуемая следующими данными: при концентрации сернистого газа 0,13 мг/м3 процент обострения хронического бронхита (в человеко-днях) 13,0, при концентрации 0,78 мг/м3- 26,5.
Статистически установлена связь детской заболеваемости (в первую очередь органов дыхания) с уровнем загрязнения атмосферного воздуха сернистым газом. Обстоятельное изучение большой группы детей (3866 человек) с момента их рождения и до 15-летнего возраста показало, что частота острых респираторных заболеваний среди них значительно увеличилось в те дни, когда уровни среднегодовых концентраций сернистого газа и дыма в атмосферном воздухе превышали 0,13 мг/м3. Аналогичная связь частоты обострений с опасным загрязнением атмосферы установлена для бронхиальной астмы.
Канцерогенные вещества при контакте с клеткой организма человека оставляют на ней "клеймо". Последующее воздействие канцерогенов суммируется даже в том случае, если оно разделено значительным интервалом времени. Вероятность возникновения злокачественного образования повышается, хотя видимого воздействия на организм и качественной перестройки клетки не отмечено. Последняя отчетливо фиксируется при пороговой концентрации. Для многих вредных веществ биологических видов и экосистем эта концентрация в настоящее время не определена.
Опасное воздействие на человека оказывает окись углерода. Вдыхание воздуха, содержащего даже небольшие количества СО, вызывает глубокое отравление. Причина отравления в том, что окись углерода быстрее и легче, чем кислород, связывается с гемоглобином крови и образует довольно стойкое соединение, названное карбоксигемоглобин (НЬ - СО). Химическое сродство НЬ с СО в 200 раз больше, чем с кислородом. Это означает, что даже небольшого количества СО во вдыхаемом воздухе оказывается достаточно, чтобы превратить около 2/3 гемоглобина крови в карбоксигемоглобин. Процесс этот обратим, но НЬ - СО диссоциирует медленно. По этой причине образовавшийся НЬ - СО нарушает дыхательную функцию крови (кровь насыщается окисью углерода и человек погибает от кислородной недостаточности). Повышенное содержание СО в воздухе при высоких уровнях загрязнения атмосферы (0,1%) нарушает сердечно-сосудистую функцию у работающих. Оно смертельно опасно для людей, страдающих сердечно-сосудистыми заболеваниями. Содержание СО в атмосфере при концентрации 0,1% в 35 раз увеличивает смертность больных острым инфарктом миокарда и т.д.
Одним из опасных загрязнителей атмосферы Земли, связанных также с нефтегазодобывающим производством, является сера. По удельной значимости вклада в загрязнение сера занимает в настоящее время одно из первых мест, особенно в составе очень распространенных сульфатных аэрозолей.
Хлор - вещество преимущественно удушающего действия, раздражает дыхательные пути, может вызвать отек легких. При действии хлора в крови нарушается содержание свободных аминокислот. При незначительных концентрациях хлора наблюдается покраснение конъюктивы, мягкого неба и глотки, чувство давления в груди. Иногда, отравление, перенесенное на ногах, через несколько дней заканчивается смертью.ПДКмр - 0,1 мг/м3, ПДКСС=0,03 мг/м3.
Токсичность оксида углерода для человека связана с высокой способностью этого газа вступать в реакцию с гемоглобином - яд гемоглобина.
Оксид углерода способен оказывать непосредственное токсическое действие на клетки, нарушая тканевое дыхание. При действии окиси углерода наблюдается тяжесть, ощущение сдавливания головы, сильная боль в висках, головокружение, дрожь, тошнота, рвота. В дальнейшем появляется оцепенелость, слабость и безучастность, нарастает сонливость. Температура тела может повышаться до 38-40оС. ПДКмр - 3 мг/м3, ПДКСС =1 мг/м3.
Порог раздражающего действия диоксида серы лежит на уровне 20 мг/м3. Острое токсическое действие оказывают более высокие концентрации; хроническое отравление, несомненно, имеет место также при концентрациях, лежащих выше порога раздражения. Порог рефлекторного действия газа на функциональное состояние коры головного мозга лежит на уровне 0,6 мг/м3. На основании последних исследований была предложена максимальная разовая ПДК в атмосферном воздухе, равная 0,5 мг/м3, т.е. ниже установленного порога. Вдыхание диоксида серы в низких концентрациях от 2,7 до 21,6 мг/м3 вызывает заметные изменения в дыхании, которое становится более поверхностным и быстрым, и сердечный ритм нарушается.
Оксиды азота оказывают раздражающее действие на органы дыхания, особенно на легкие, и в больших концентрациях вызывают отек легких. Опасной при кратковременном дыхании является концентрация 200-300 мг/л. При концентрации 15 мг/м3 ощущается явный запах оксида азота и слабое раздражение глаз; при концентрации 10 мг/м3 запах едва заметен; при концентрации 3 мг/м3 запаха не обнаруживается. Учитывая высокую токсичность диоксида азота, в качестве среднесуточной ПДК в атмосферном воздухе рекомендовали концентрацию 0,085 мг/м3, т.е. на уровне максимальной разовой величины. Действие на организмуглеводородных компонентов в сочетании с сероводородом многообразно. Прежде всего, страдает центральная нервная система. При углеводородных отравлениях поражается промежуточный мозг как высший центр вегетативной нервной системы. Углеводороды влияют на сердечно-сосудистую систему, а также на гематологические показатели (снижение содержания гемоглобина и эритроцитов). Специальные экспериментальные исследования указывают на возможность поражения печени, нарушения различных ее функций при хроническом воздействии нефтепродуктов. Углеводороды влияют и на эндокринный аппарат организма. При хроническом воздействии углеводородов выявляются изменения в щитовидной железе, коре надпочечников. Основные типы опухолей легких, особенно часто встречающихся и в патологии человека, - плоскоклеточный рак, недифференцированный рак типа мелкоклеточного, аденокарцинома и комбинированные опухоли, а также саркомы.
Способы профилактики, прогноза и средств защиты
Основными профилактическими мероприятиями, обеспечивающими метеорологические условия и чистоту воздуха, являются строительство газоочистных сооружений и правильно организованные вентиляционные системы.
В зоне химического заражения (ЗXЗ) может оказаться само предприятие и прилегающая к нему территория. В соответствии с этим выделяют 4 степени опасности химических объектов:
I степень - в зону возможного заражения попадают более 75 тыс. человек;
II степень - в зону возможного химического заражения попадают 40-75 тыс. человек;
III степень - в зону возможного химического заражения попадают менее 40 тыс. человек;
IV степень - зона возможного химического заражения не выходит за границы объекта.
Размеры очага химического заражения в основном зависят от количества разлившегося ХОВ, метеоусловий и токсичности вещества. Форма и размеры зоны заражения в значительной мере зависят от скорости ветра. Так, при скорости ветра от 0 до 0,5 м/с зона заражения будет представлять собой круг, при скорости от 0,6 до 1 м/с - полукруг, при скорости от 1,1 до 2 м/с - сектор с углом 90°, при скорости более 2 м/с - сектор с углом в 45°.
Скорость ветра определяет не только форму зоны заражения, но и скорость движения зараженного облака. Так, при скорости ветра 1 м/с за 1 ч облако удалится от места аварии на 5-7 км, при 2 м/с - на 10-14 км, а при 3 м/с - на 16-21 км. Значительное увеличение скорости ветра (6-7 м/с и более) способствует быстрому рассеиванию облака.
Глубина зоны заражения зависит от метеорологических условий, вертикальной устойчивости атмосферы и колебаний направления ветра.
Различают три степени вертикальной устойчивости атмосферы: инверсию, изотермию, конвекцию.
Инверсия - это повышение температуры воздуха по мере увеличения высоты. Толщина приземных инверсий составляет десятки и сотни метров. Этот слой является в атмосфере задерживающим. Под ним накапливается водяной пар, пыль, что способствует образованию дыма и тумана. Инверсия способствует сохранению высоких концентраций ХОВ в приземном слое воздуха.
Изотермия характеризуется равновесием воздуха и типична для пасмурной погоды. Она также возникает в утренние и вечерние часы. Изотермия, как и инверсия, способствует застою паров ХОВ в приземном слое.
Конвекция характеризуется вертикальным перемещением воздуха с одной высоты на другую. Такие перемещения воздуха приводят к рассеиванию зараженного облака, снижают концентрацию ХОВ и препятствуют их распространению. Наиболее часто подобное явление наблюдается в летние ясные дни.
Если рассмотреть в качестве примера аварию с разрушением 100-тонной емкости с ХОВ при скорости ветра 2 м/с, то:
в случае инверсии опасное воздействие паров аммиака может сказываться на расстоянии порядка 4 км, хлора - до 20 км;
в случае изотермии опасное воздействие паров аммиака может сказываться на расстоянии порядка 1,3 км, хлора - до 4 км;
в случае конвекции опасное воздействие паров аммиака может сказываться на расстоянии порядка 0,5 км, хлора - до 2 км.
Защита населения - комплекс организационных, инженерно-технических и специальных мероприятий по предупреждению и ослаблению воздействия на жизнь и здоровье людей отравляющих и химически опасных веществ.
Общие требования к организации и проведению аварийно-спасательных работ при авариях на химически опасных промышленных объектах устанавливает ГОСТ ?
Комментарии