Научное воображение в физике

ФИГ.1
Представьте себе электрические и магнитные поля. Что вы для этого сделали? Знаете ли вы, как это нужно сделать? И как я сам представляю себе электрическое и магнитное поля? Что я на самом деле при этом вижу? Что требуется от научного воображения? Отличается ли оно чем-то от попытки представить себе комнату, полную невидимых ангелов? Нет, это не похоже на такую попытку.
Чтобы получить представление об электромагнитном поле, требуется более высокая степень воображения. Почему? Да потому что для того, чтобы невидимые ангелы стали доступны пониманию, мне нужно только чуть-чуть изменить их свойства — я делаю их слегка видимыми, и тогда я уже могу увидеть и форму их крыльев, и их тела, и их нимбы. Как только мне удалось представить себе видимого ангела, то необходимая для дальнейшего абстракция (состоящая в том, чтобы почти невидимых ангелов представить себе совершенно невидимыми) оказывается сравнительно легким делом.
Вы можете тоже сказать: «Профессор, дайте мне, пожалуйста, приближенное описание электромагнитных волн, пусть даже слегка неточное, но такое, чтобы я смог увидеть их так, как я могу увидеть почти невидимых ангелов. И я видоизменю эту картину до нужной абстракции».
Увы, я не могу этого сделать для вас. Я просто не знаю как. У меня нет картины этого электромагнитного поля, которая была бы хоть в какой-то степени точной. Я узнал об электромагнитном поле давным-давно, 25 лет тому назад, когда я был на вашем месте, и у меня на 25 лет больше опыта размышлений об этих колеблющихся волнах. Когда я начинаю описывать магнитное поле, движущееся через пространство, то говорю о полях Е и В, делаю руками волнистые движения и вы можете подумать, что я способен их видеть. А на самом деле, что я при этом вижу? Вижу какие-то смутные, туманные, волнистые линии, на них там и сям надписано Е и В, а у других линий имеются словно какие-то стрелки, то здесь, то там на них есть стрелки, которые исчезают, едва в них вглядишься. Когда я рассказываю о полях, проносящихся сквозь пространство, в моей голове катастрофически перепутываются символы, нужные для описания объектов, и сами объекты. Я не в состоянии дать картину, хотя бы приблизительно похожую на настоящие волны. Так что, если вы сталкиваетесь с такими же затруднениями при попытках представить поле, не терзайтесь, дело обычное.
Наша наука и жизнь предъявляет воображению немыслимые требования. Степень воображения, которая теперь требуется в науке, несравненно превосходит то, что требовалось для некоторых прежних идей. Нынешние идеи намного труднее вообразить себе. Правда, мы используем для этого множество средств. В ход пускаются математические уравнения и правила, рисуются различные картинки. Вот сейчас я ясно осознаю, что всегда, когда я завожу речь об электромагнитном поле в пространстве, фактически перед моим взором встает своего рода суперпозиция всех тех диаграмм на эту тему, которые я когда-либо видывал. Я не воображаю себе маленьких пучков линий поля, снующих туда и сюда; они не нравятся мне потому, что если бы я двигался с иной скоростью, то они бы исчезли. Я не всегда вижу и электрические, и магнитные поля, потому что временами мне кажется, что гораздо правильнее была бы картина, включающая векторный и скалярный потенциалы, ибо последние, пожалуй, имеют больший физический смысл, чем колебания полей.
Быть может, вы считаете, что остается единственная надежда на математическую точку зрения. Но что такое математическая точка зрения? С математической точки зрения в каждом месте пространства существует вектор электрического поля и вектор магнитного поля, т. е. с каждой точкой связаны шесть чисел. Способны ли вы вообразить шесть чисел, связанных с каждой точкой пространства? Это слишком трудно. А можете вы вообразить хотя бы одно число, связанное с каждой точкой пространства? Я лично не могу! Я способен себе представить такую вещь, как температура в каждой точке пространства. Но это, по-видимому, вообще вещь представимая: имеется теплота и холод, меняющиеся от места к месту. Но, честное слово, я не способен представить себе число в каждой точке.
Может быть, поэтому стоит поставить вопрос так: нельзя ли представить электрическое поле в виде чего-то сходного с температурой, скажем, похожего на смещения куска студня? Сначала вообразим себе, что мир наполнен тонкой студенистой массой, а поля представляют собой какие-то искривления (скажем, растяжения или повороты) этой массы. Вот тогда можно было бы себе мысленно вообразить поле. А после того, как мы «увидели», на что оно похоже, мы можем отвлечься от студня. Именно -это многие и пытались делать довольно долгое время. Максвелл, Ампер, Фарадей и другие пробовали таким способом понять электромагнетизм. (Порой они называли абстрактный студень «эфиром».) Но оказалось, что попытки вообразить электромагнитное поле подобным образом на самом деле препятствуют прогрессу. К сожалению, наши способности к абстракциям, к применению приборов для обнаружения поля, к использованию математических символов для его описания и т. д. ограниченны. Однако поля в известном смысле — вещь вполне реальная, ибо, закончив возню с математическими уравнениями (все равно, с иллюстрациями или без, с чертежами или без них, пытаясь представить поле въяве или не делая таких попыток), мы все же можем создать приборы, которые поймают сигналы с космической ракеты или обнаружат в миллиарде световых лет от нас галактику, и тому подобное.
Вопрос о воображении в науке наталкивается зачастую на непонимание у людей других специальностей. Они принимаются испытывать наше воображение следующим способом. Они говорят: «Вот перед вами изображены несколько людей в некоторой ситуации. Как вы представляете, что с ними сейчас случится?» Если вы ответите: «Не могу себе представить», они могут счесть вас за человека со слабым воображением. Они проглядят при этом тот факт, что все, что допускается воображать в науке, должно согласовываться со всем прочим, что нам известно: что электрические поля и волны, о которых мы говорим, это не просто удачные мысли, которые мы вызываем в себе, если нам этого хочется, а идеи, которые обязаны согласовываться со всеми известными законами физики. Недопустимо всерьез воображать себе то, что очевидным образом противоречит известным законам природы. Так что наш род воображения — весьма трудная игра. Надо иметь достаточно воображения, чтобы думать о чем-то никогда прежде не виденном, никогда прежде не слышанном. В то же время приходится, так сказать, надевать на мысли смирительную рубашку, ограничивать их условиями, вытекающими из наших знаний о том, какому пути на самом деле следует природа. Проблема создания чего-то, что является совершенно новым и в то же время согласуется со всем, что мы видели раньше,— проблема чрезвычайно трудная.
Но раз уж зашла об этом речь, я хочу остановиться на том, в состоянии ли мы себе представить красоту, которую мы не можем видеть. Это интересный вопрос. Когда мы глядим на радугу, она нам кажется прекрасной. Каждый, увидав ее, воскликнет: «О радуга!». (Смотрите, как научно я подхожу к вопросу. Я остерегаюсь именовать что-то восхитительным, пока нет экспериментального способа определить это.) Ну, а как мы описывали бы радугу, если бы были слепыми? А ведь мы слепы, когда измеряем коэффициент отражения инфракрасных лучей от хлористого натрия или когда говорим о частоте волн, пришедших от некоторой невидимой глазу галактики. Тогда мы чертим график, рисуем диаграмму. К примеру, для радуги подобным графиком была бы зависимость интенсивности излучения от длины волны, измеренная спектрофотометром под всевозможными углами к горизонту. Вообще говоря, подобные измерения должны были бы приводить к довольно пологим кривым. И вот в один прекрасный день кто-то обнаружил бы, что при какой-то определенной погоде, под некоторыми углами к горизонту спектр интенсивности как функция длины волны начал себя вести странно — у него появился пик. Если бы угол наклона прибора чуть-чуть изменился, максимум пика перешел бы от одной длины волны к другой. И вот через некоторое время и физическом журнале для слепых появилась бы техническая статья под названием «Интенсивность излучения как функция угла при некоторых метеоусловиях». В этой статье был бы график типа, показанного на фиг. 1. «Автор заметил,— говорилось бы, быть может, в статье,— что под большими углами основная часть радиации приходится на длинные волны, а под меньшими максимум излучения смещается к коротким волнам». (Ну, а мы бы сказали, что под углом 40° свет преимущественно зеленый, а под углом 42° — красный.)
Но находите ли вы график, приведенный на фиг. 1, восхитительным? В нем ведь содержится существенно больше различных деталей, чем мы в состоянии постичь, когда видим радугу: наши глаза не могут схватить доподлинную форму спектра. А вот глазам радуга все же кажется восхитительной. Хватает ли у вас воображения, чтобы в спектральных кривых увидеть всю ту красоту, которую мы видим, смотря на радугу? У меня — нет.
Но представим себе, что у меня имеется график зависимости коэффициента отражения кристаллов хлористого натрия от длины волны в инфракрасном участке спектра и от угла. Я могу вообразить себе, как это представилось бы моим глазам, обладай они способностью видеть в инфракрасном свете. Должно быть, это был бы какой-то яркий, насыщенный «зеленый цвет», на который накладывались бы отражения от поверхностей «металлически-красных» тонов. Это выглядело бы поистине великолепно, но я не знаю, способен ли я, взглянув на график коэффициента отражения NaCl, снятый на каком-то приборе, сказать, что он столь же прелестен.
Но, с другой стороны, хоть мы и не можем видеть красоту тех или иных частных измерений, мы можем утверждать, что постигаем своеобразную красоту уравнений, описывающих всеобщие физические законы. Например, в волновом уравнении (20.9) очень красива та правильность, с какой в нем расположены х, у, z и t. И эта приятная симметрия появления х, у, z, t намекает на ту величественную красоту, которая таится в четырех равнозначных координатах, в возможности того, что у пространства есть четырехмерная симметрия, в возможности проанализировать ее и развить специальную теорию относительности. Так что существует еще интеллектуальная красота, ассоциируемая с уравнениями.
Комментарии
После 1963 года, когда были прочитаны эти лекции, физика ушла далеко вперёд, в том числе - и интерпретация многих физических понятий.
Например, ныне уже нельзя сказать, что "электрическое поле движется в пространстве".
Поле (электромагнитное) может переносить энергию, но ДВИГАТЬСЯ поле - не может.
Особенно странным такое утверждение может представиться в свете современной квантовой электродинамики, созданной самим Ричардом Фейнманом.
Такие речевые обороты сейчас вообще считаются недопустимыми.
Уж если приводить цитаты из Фейнмана, то лучше из других разделов. Или - из "КЭД - странная теория вещества".
Но там - действительно непонятно для многих. Но это - уже физика второй половины XX века.
Поэтому, размещение материалов правильно.
Есть возможность обсудить.
Поле не может быть локализовано в пространстве, особенно - однородное поле, существование которого вполне допустимо в рамках обсуждаемой модели. Поэтому говорить о движении поля - мне кажется моветоном.
можно говорить лишь о движении источника поля - заряженной частицы или проводника с током, или магнитного диполя.
А движение источника поля - это реальность.
Но повторю, здесь можно обсуждать и исторический аспект.
http://www.all-fizika.com/article/index.php?id_article=935
Поля не "отрываются" от источника. Поля существуют во всём пространстве. Изменения полей - да, распространяются в пространстве, изменения э/м поля - в виде э/м волн.
К слову, когда вышла "вторая" серия ФЛФ, т.т. 5-6, мы этот пассаж проанализировали и поняли, что тут виновата американская традиция преподавания физики.
Кстати, электромагнитного поля не существует, поэтому представить его себе, невозможно. Существуют только электрические поля.
А еще футбольные. Только они имеют совершенно другую природу.
Но, насчет футбольных полей, Вы совершенно правы. Мяч от поля отталкивается. Значит можно сравнить его с одноименно заряженной частицей. А вот насчет электромагнитного поля как раз Фейнман много и хорошо написал в своих лекциях. И что такое электрическое поле и что такое электромагнитное. И лучше это знать, чем читать некоторые современные трактовки тех, кто уравнения не понимает.
Электрическое поле - это одна из двух компонент электромагнитного поля. Та, которая может действовать в том числе и на неподвижные заряды.
Словоблудием.
И это тоже, ... деятельность, ... необходимая для бытия и ... развития.
Какая взаимосвязь между электрическим полем, электрическим током и магнитным полем?
Когда нет экспериментальных доказательств существования электромагнитного поля, надо обратиться к законам Кулона и Ампера. Но законы Кулона и Ампера предусматривают образование электрических и магнитных полей только при наличии двух компонентов (двух зарядов, двух проводников с электрическим током). И электрическое, и магнитное поля есть результат взаимодействия как минимум или двух зарядов, или двух проводников с электрическим током. Термин поле просто неудачное название данного процесса.
http://www.shok.us/elektromagnitnoe-pole-fantaziya/
поскольку природа сих процессов не конкректна до сих пор.
Как в земледелии: можно картофель вырастить, а можно и под рис затопить. А можно и по Голландским технологиям обрабатывать, а можно и по Российски -- бурьян да берёзы возделывать.
Можно в футбол погонять, а можно и застроить коттеджами или
небоскрёбами.
Похоже, что "разборки" по "физическому полю" бесконечны.
А потому и термин весьма удачный. ... Пластилиновый, что-ли.
Все поля едины. Только некоторые имеют разные свойства.
Хороший и правильный термин.
Тогда не смешно!
Он отвечает на множество вопросов, такие как гравитация, банально откуда землетрясения и много т. д. Я этим занимаюсь 30 лет и нахожусь на стадии окончательных работ, готовится демонстрационный вариант.
Он отвечает на множество вопросов, такие как гравитация, банально откуда землетрясения и много т. д. Я этим занимаюсь 30 лет и нахожусь на стадии окончательных работ, готовится демонстрационный вариант потоко уловителя, заходите http://www.shok.us/ .
А Тесла похоже путал поток с эфиром. Это разные вещи.
С помощью данной модели стало возможно объяснить все процессы в природе.
Трудно такое представить.
К сожалению, в енауке очень много Швондеров, которые мешают изобретателям творить великие дела. Я Вам сочувствую!
Источник: http://www.shok.me/teoriya-efira-n-tesly/
А поток или поле - это события в среде.
Так может быть, наоборот, представим, что поле – это именно и есть тот дрожащий студень, который заполняет все пространство, с разной плотностью в каждой его точке?
Еще в позапрошлом веке австрийский физик и философ Эрнест Мах (1838-1916) доказывал, что каждая частица имеет некое поле. И каждое тело, планета, звезда, галактика - как совокупность частиц, также имеют некое свое поле, как векторную сумму полей всех своих частиц, атомов, молекул. И что все пространство Вселенной заполнено совокупностью этих полей.
Наполненность пространства совокупностью полей и придает ему способность БЫТЬ ОСОБОЙ УПРУГОЙ СРЕДОЙ, в которой распространяются различные эл.магнитные, а также ПРОДОЛЬНЫЕ (а не поперечные) волны видимого света.
_________________
А свет - это не электромагнитные волны?
раздел "Распространение света"
Особенно фотографы.