От деления к синтезу: как устроена нейтронная бомба

На модерации Отложенный

От деления к синтезу: как устроена нейтронная бомба

От деления к синтезу: как устроена нейтронная бомба

За время, прошедшее после первого испытания в Аламогордо, прогремели тысячи взрывов зарядов деления, в каждом из которых добывались драгоценные знания об особенностях их функционирования. Знания эти подобны элементам мозаичного полотна, причем оказалось, что «полотно» это ограничено законами физики: снижению габаритов боеприпаса и его мощности кладет предел кинетика замедления нейтронов в сборке, а достижение энерговыделения, существенно превышающего сотню килотонн, невозможно из-за ядерно-физических и гидродинамических ограничений допустимых размеров докритической сферы. Но сделать боеприпасы более мощными все же возможно, если вместе с делением заставить «работать» ядерный синтез.

Деление плюс синтез

Топливом для синтеза служат тяжелые изотопы водорода. При слиянии ядер дейтерия и трития образуется гелий-4 и нейтрон, энергетический выход при этом — 17,6 МэВ, что в несколько раз больше, чем при реакции деления (в пересчете на единицу массы реагентов). В таком топливе при нормальных условиях не может возникнуть цепная реакция, так что количество его не ограничено, а значит, у энерговыделения термоядерного заряда нет верхнего предела.


Однако для того, чтобы началась реакция синтеза, нужно сблизить ядра дейтерия и трития, а этому мешают силы кулоновского отталкивания. Для их преодоления нужно разогнать ядра навстречу друг другу и столкнуть. В нейтронной трубке при реакции срыва на ускорение ионов высоким напряжением тратится большая энергия. А вот если разогреть топливо до очень высоких температур в миллионы градусов и сохранить его плотность на протяжении необходимого для реакции времени, оно выделит энергию куда большую, чем та, которая затрачена на нагрев. Именно благодаря этому способу реакции и оружие стали называться термоядерными (по составу топлива такие бомбы также называют водородными).
Для нагрева топлива в термоядерной бомбе — в качестве «запала» — и нужен ядерный заряд. Корпус «запала» прозрачен для мягкого рентгеновского излучения, которое при взрыве опережает разлетающееся вещество заряда и превращает в плазму ампулу, содержащую термоядерное топливо. Вещество оболочки ампулы подобрано так, что его плазма существенно расширяется, сжимая топливо к оси ампулы (такой процесс называют радиационной имплозией).

Дейтерий и тритий

Дейтерий «примешан» к природному водороду в еще примерно впятеро меньших количествах, чем «оружейный» уран — к обычному. Но разность масс у протия и дейтерия — двойная, поэтому процессы их разделения в противоточных колоннах более эффективны. Тритий же, подобно плутонию-239, не существует в природе в ощутимых количествах, его добывают, воздействуя мощными нейтронными потоками в ядерном реакторе на изотоп лития-6, получая литий-7, который распадается на тритий и гелий-4.
Как радиоактивный тритий, так и стабильный дейтерий оказались опасными веществами: подопытные животные, которым вводились соединения дейтерия, умирали с симптомами, характерными для старости (охрупчивание костей, потеря интеллекта, памяти). Этот факт послужил основой теории, в соответствии с которой смерть от старости и в естественных условиях наступает при накоплении дейтерия: через организм в процессе жизнедеятельности проходят многие тонны воды и других соединений водорода, и более тяжелые дейтериевые компоненты постепенно накапливаются в клетках. Теория объясняла и долгожительство горцев: в поле земного притяжения концентрация дейтерия действительно незначительно убывает с высотой. Однако многие соматические эффекты оказались противоречащими «дейтериевой» теории, и в итоге она была отвергнута.


Изотопы водорода — дейтерий (D) и тритий (T) — при нормальных условиях представляют собой газы, достаточные количества которых сложно «собрать» в устройстве разумных размеров. Поэтому в зарядах используют их соединения — твердые гидриды лития-6. По мере того как синтез самых «легкозажигаемых» изотопов разогревает топливо, в нем начинают протекать и другие реакции — с участием как содержавшихся в смеси, так и образовавшихся ядер: слияние двух ядер дейтерия с образованием трития и протона, гелия-3 и нейтрона, слияние двух ядер трития с образованием гелия-4 и двух нейтронов, слияние гелия-3 и дейтерия с образованием гелия-4 и протона, а также слияние лития-6 и нейтрона с образованием гелия-4 и трития, так что и литий оказывается не совсем уж «балластом».

... Плюс деление

Хотя энерговыделение двухфазного (деление + синтез) взрыва может быть сколь угодно велико, значительная его часть (для первой из упомянутых реакций — более 80%) уносится из огненного шара быстрыми нейтронами; их пробег в воздухе составляет многие километры, и поэтому они не вносят вклад во взрывные эффекты.


Если же необходим именно взрывной эффект, в термоядерном боеприпасе реализуется еще и третья фаза, для чего ампула окружается тяжелой оболочкой из урана-238. Нейтроны, испускаемые при распаде этого изотопа, имеют слишком малую энергию для поддержания цепной реакции, но зато уран-238 делится под действием «внешних» высокоэнергетичных термоядерных нейтронов. Нецепное деление в урановой оболочке дает прибавку энергии огненного шара, иногда превышающую даже вклад термоядерных реакций! На каждый килограмм веса трехфазных изделий приходится несколько килотонн тротилового эквивалента — они существенно превосходят по удельным характеристикам другие классы ядерного оружия.
Однако у трехфазных боеприпасов есть очень неприятная особенность — повышенный выход осколков деления. Конечно, двухфазные боеприпасы тоже загрязняют местность нейтронами, вызывающими практически во всех элементах ядерные реакции, не прекращающиеся и спустя многие годы после взрыва (так называемая наведенная радиоактивность), осколками деления и остатками «запалов» (в процессе взрыва «расходуется» всего 10−30% плутония, остальное разлетается по окрестностям), но трехфазные превосходят их в этом отношении. Превосходят настолько, что некоторые боеприпасы даже выпускались в двух вариантах: «грязных» (трехфазных) и менее мощных «чистых» (двухфазных) для применения на территории, где предполагались действия своих войск. Например, американская авиабомба В53 выпускалась в двух идентичных по внешнему виду вариантах: «грязном» В53Y1 (9 Мт) и «чистом» варианте В53Y2 (4,5 Мт).

 

Виды ядерных взрывов: 1. Космический. Применяется на высоте более 65 км для поражения космических целей. 2. Наземный. Производится на поверхности земли или на такой высоте, когда светящаяся область касается грунта. Применяется для разрушения наземных целей. 3. Подземный. Производится ниже уровня земли. Характерен сильным заражением местности. 4. Высотный. Применяется на высоте от 10 до 65 км для поражения воздушных целей. Для наземных объектов опасен только воздействием на электро- и радиоприборы. 5. Воздушный. Производится на высотах от нескольких сотен метров до нескольких километров. Радиоактивное заражение местности практически отсутствует. 6. Надводный. Производится на поверхности воды или на такой высоте, когда световая область касается воды. Характерен ослаблением действия светового излучения и проникающей радиации. 7. Подводный. Производится под водой. Световое излучение и проникающая радиация практически отсутствует. Вызывает сильное радиоактивное заражение воды.


Факторы взрыва

Из энергии 202 МэВ, которую поставляет каждый акт деления, мгновенно выделяются: кинетическая энергия продуктов деления (168 МэВ), кинетическая энергия нейтронов (5 МэВ), энергия гамма-излучения (4,6 МэВ). Благодаря этим факторам ядерное оружие и господствует на поле боя. Если взрыв происходит в сравнительно плотном воздухе, две трети его энергии переходит в ударную волну. Почти весь остаток забирает световое излучение, оставляя лишь десятую часть проникающей радиации, а из этого мизера лишь 6% достается сотворившим взрыв нейтронам. Существенную энергию (11 МэВ) уносят с собой нейтрино, но они настолько неуловимы, что найти им и их энергии практическое применение не удается до сих пор.
Со значительным запаздыванием после взрыва выделяются энергия бета-излучения продуктов деления (7 МэВ) и энергия гамма-излучения продуктов деления (6 МэВ). Эти факторы отвечают за радиоактивное заражение местности — явление, весьма опасное для обеих сторон.

 


Действие ударной волны понятно, поэтому и мощность ядерного взрыва стали оценивать, сравнивая со взрывом обычной взрывчатки. Не были необычными и эффекты, вызываемые мощной вспышкой света: горели деревянные постройки, получали ожоги солдаты. А вот эффекты, не превращающие цель в головешки или тривиальную, не вызывающую возмущения груду развалин — быстрые нейтроны и жесткое гамма-излучение — конечно же, считались «варварством».
Прямое действие гамма-излучения уступает по боевому эффекту и ударной волне, и свету. Лишь огромные дозы гамма-излучения (десятки миллионов рад) могут причинить неприятности электронике. При таких дозах плавятся металлы, а ударная волна с куда меньшей плотностью энергии уничтожит цель без подобных излишеств. Если плотность энергии гамма-излучения меньше, оно становится безвредным для стальной техники, а ударная волна и тут может сказать свое слово.
С «живой силой» тоже не все очевидно: во‑первых, гамма-излучение существенно ослабляется, например, броней, а во-вторых — особенности радиационных поражений таковы, что даже получившие абсолютно смертельную дозу в тысячи бэр (биологический эквивалент рентгена, доза любого вида излучения, производящая такое же действие в биологическом объекте, как 1 рентген) экипажи танков оставались бы боеспособными в течение нескольких часов. За это время подвижные и сравнительно малоуязвимые машины успели бы сделать многое.

Смерть электронике

Хотя прямое гамма-облучение существенного боевого эффекта не обеспечивает, он возможен за счет вторичных реакций.

В результате рассеяния гамма-квантов на электронах атомов воздуха (Комптон-эффект) возникают электроны отдачи. От точки взрыва расходится ток электронов: их скорость существенно выше, чем скорость ионов. Траектории заряженных частиц в магнитном поле Земли закручиваются (а значит, двигаются с ускорением), формируя при этом электромагнитный импульс ядерного взрыва (ЭМИ ЯВ).


В постоянной готовности

Любое соединение, содержащее тритий, нестабильно, потому что половина ядер этого изотопа сама по себе распадается на гелий-3 и электрон за 12 лет, и чтобы поддерживать готовность многочисленных термоядерных зарядов к применению, необходимо непрерывно нарабатывать тритий в реакторах. В нейтронной трубке трития немного, и гелий-3 поглощается там специальными пористыми материалами, а вот из ампулы этот продукт распада надо откачивать насосом, иначе ее просто разорвет давлением газа. Подобные трудности привели, например, к тому, что английские специалисты, получив в 1970-х годах из США ракеты Polaris, предпочли отказаться от американского термоядерного боевого оснащения в пользу разработанных в своей стране по программе Chevaline менее мощных однофазных зарядов деления. В предназначенных для борьбы с танками нейтронных боеприпасах была предусмотрена замена ампул с существенно уменьшившимся количеством трития на «свежие», производимая в арсеналах в процессе хранения. Могли такие боеприпасы применяться и с «холостыми» ампулами — как однофазные ядерные снаряды килотонной мощности. Можно использовать термоядерное топливо и без трития, только на основе дейтерия, но тогда, при прочих равных условиях, энерговыделение существенно снизится. Схема работы трехфазного термоядерного боеприпаса. Взрыв заряда деления (1) превращает ампулу (2) в плазму, сжимающую термоядерное топливо (3). Для усиления взрывного эффекта за счет потока нейтронов используется оболочка (4) из урана-238.
В энергию ЭМИ ЯВ переходит лишь 0,6% энергии гамма-квантов, а ведь их доля в балансе энергии взрыва сама по себе мала. Вклад вносит и дипольное излучение, возникающее за счет изменения плотности воздуха с высотой, и возмущение магнитного поля Земли проводящим плазмоидом. В результате образуется непрерывный частотный спектр ЭМИ ЯВ — совокупность колебаний огромного числа частот. Существенен энергетический вклад излучения с частотами от десятков килогерц до сотен мегагерц. Эти волны ведут себя по‑разному: мегагерцевые и более высокочастотные затухают в атмосфере, а низкочастотные — «ныряют» в естественный волновод, образованный поверхностью Земли и ионосферой, и могут не раз обогнуть земной шар. Правда, «долгожители» эти напоминают о своем существовании лишь хрипением в приемниках, похожим на «голоса» грозовых разрядов, а вот их более высокочастотные родственники заявляют о себе мощными и опасными для аппаратуры «щелчками».
Казалось бы, такие излучения вообще должны быть безразличны военной электронике — ведь любое устройство с наибольшей эффективностью принимает волны того диапазона, в каком их излучает. А принимает и излучает военная электроника в гораздо более высокочастотных, чем ЭМИ ЯВ, диапазонах. Но ЭМИ ЯВ действует на электронику не через антенну. Если ракету длиной в 10 м «накрывала» длинная волна с не поражающей воображение напряженностью электрического поля в 100 В/см, то на металлическом ракетном корпусе наводилась разность потенциалов в 100 000 В! Мощные импульсные токи через заземляющие связи «затекают» в схемы, да и сами точки заземления на корпусе оказывались под существенно отличающимися потенциалами. Токовые перегрузки опасны для полупроводниковых элементов: для того чтобы «сжечь» высокочастотный диод, достаточно импульса мизерной (в десятимиллионную долю джоуля) энергии. ЭМИ занял почетное место могущественного поражающего фактора: иногда им выводилась из строя аппаратура за тысячи километров от ядерного взрыва — такое было не по силам ни ударной волне, ни световому импульсу.

 


Понятно, параметры вызывающих ЭМИ взрывов были оптимизированы (в основном высота подрыва заряда данной мощности). Разрабатывались и меры защиты: аппаратура снабжалась дополнительными экранами, охранными разрядниками. Ни один образец боевой техники не принимался на вооружение, пока не была доказана испытаниями — натурными или на специально созданных имитаторах — его стойкость к ЭМИ ЯВ, по крайней мере такой интенсивности, которая характерна для не слишком уж больших дистанций от взрыва.


Бесчеловечное оружие

Однако вернемся к двухфазным боеприпасам. Их основной поражающий фактор — потоки быстрых нейтронов. Это породило многочисленные легенды о «варварском оружии» — нейтронных бомбах, которые, как писали в начале 1980-х советские газеты, при взрыве уничтожают все живое, а материальные ценности (здания, технику) оставляют практически неповрежденными. Настоящее мародерское оружие — взорвал, а потом приходи и грабь! На самом деле любые предметы, подвергшиеся воздействию значительных нейтронных потоков, опасны для жизни, потому что нейтроны после взаимодействия с ядрами инициируют в них разнообразные реакции, становящиеся причиной вторичного (наведенного) излучения, которое испускается в течение длительного времени после того, как распадется последний из облучавших вещество нейтронов.
Для чего же было предназначено это «варварское оружие»? Двухфазными термоядерными зарядами оснащались боевые части ракет Lance и 203-мм гаубичные снаряды. Выбор носителей и их досягаемость (десятки километров) указывают на то, что создавалось это оружие для решения оперативно-тактических задач. Нейтронные боеприпасы (по американской терминологии — «с повышенным выходом радиации») предназначались для поражения бронетехники, по численности которой Варшавский пакт превосходил НATO в несколько раз. Танк достаточно стоек к воздействию ударной волны, поэтому после расчетов применения ядерного оружия различных классов против бронетехники, с учетом последствий заражения местности продуктами деления и разрушений от мощных ударных волн, основным поражающим фактором решили сделать нейтроны.

Абсолютно чистый заряд

В стремлении получить такой термоядерный заряд попытались отказаться от ядерного «запала», заменив деление сверхскоростной кумуляцией: головной элемент струи, состоявшей из термоядерного топлива, разогнали до сотни километров в секунду (в момент столкновения температура и плотность значительно возрастают). Но на фоне взрыва килограммового кумулятивного заряда «термоядерная» прибавка оказалась ничтожной, и эффект зарегистрировали лишь косвенно — по выходу нейтронов. Отчет об этих проведенных в США экспериментах был опубликован в 1961 году в сборнике «Атом и оружие», что при тогдашней параноидальной секретности само по себе свидетельствовало о неудаче.
В семидесятых, в «неядерной» Польше, Сильвестр Калиский теоретически рассмотрел сжатие термоядерного топлива сферической имплозией и получил весьма благоприятные оценки. Но экспериментальная проверка показала, что, хотя выход нейтронов, по сравнению со «струйным вариантом», возрос на много порядков, нестабильности фронта не позволяют достичь нужной температуры в точке схождения волны и реагируют только те частицы топлива, скорость которых, из-за статистического разброса, значительно превышает среднее значение. Так что совсем «чистый» заряд создать не удалось.


Рассчитывая остановить навал «брони», в штабах НАТО разработали концепцию «борьбы со вторыми эшелонами», стараясь отнести подальше рубеж применения нейтронного оружия по противнику. Основная задача бронетанковых войск — развитие успеха на оперативную глубину, после того как их бросят в брешь в обороне, пробитую, например, ядерным ударом большой мощности. В этот момент применять радиационные боеприпасы уже поздно: хотя 14-МэВ нейтроны незначительно поглощаются броней, поражения экипажей излучением сказываются на боеспособности не сразу. Поэтому такие удары планировались по выжидательным районам, где изготавливались к введению в прорыв основные массы бронетехники: за время марша к линии фронта на экипажах должны были проявиться последствия облучения.

Нейтронные перехватчики

Еще одним применением нейтронных боеприпасов стал перехват ядерных боеголовок. Перехватить боевой блок противника надо на большой высоте, чтобы даже в случае его подрыва не пострадали объекты, на которые он нацелен. Но отсутствие вокруг воздуха лишает противоракету возможности поразить цель ударной волной. Правда, при ядерном взрыве в безвоздушном пространстве возрастает преобразование его энергии в световой импульс, но помогает это мало, поскольку боевой блок рассчитан на преодоление теплового барьера при входе в атмосферу и снабжен эффективным обгорающим (абляционным) теплозащитным покрытием. Нейтроны же свободно «проскакивают» через такие покрытия, а проскочив, бьют в «сердце» боевого блока — сборку, содержащую делящееся вещество. Ядерный взрыв при этом невозможен — сборка докритична, но нейтроны порождают в плутонии много затухающих цепей деления. Плутоний, который и при нормальных условиях из-за самопроизвольно протекающих ядерных реакций имеет ощутимую при касании повышенную температуру, при мощном внутреннем подогреве плавится, деформируется, а значит, уже не сможет превратиться в нужный момент в сверхкритическую сборку.
Такими двухфазными термоядерными зарядами оснащены американские противоракеты Sprint, охраняющие шахты межконтинентальных баллистических ракет. Конусная форма ракет позволяет выдерживать огромные перегрузки, возникающие во время старта и при последующем маневрировании.

Автор статьи с 1984 по 1997 год возглавлял лабораторию специальных боеприпасов ЦНИИ химии и механики. В этом году в издательстве «Моркнига» вышла его книга «Огонь!», посвященная таким боеприпасам.Автор: А.Прищепенко
Источник: Популярная механика

 

 

<hr/>

Опубликовано 14 февраля 2020 | Комментариев 0